Loading…

A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)

Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve t...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2023-07, Vol.16 (14), p.4017-4040
Main Authors: Li, Lingcheng, Fang, Yilin, Zheng, Zhonghua, Shi, Mingjie, Longo, Marcos, Koven, Charles D, Holm, Jennifer A, Fisher, Rosie A, McDowell, Nate G, Chambers, Jeffrey, Leung, L. Ruby
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43
container_end_page 4040
container_issue 14
container_start_page 4017
container_title Geoscientific Model Development
container_volume 16
creator Li, Lingcheng
Fang, Yilin
Zheng, Zhonghua
Shi, Mingjie
Longo, Marcos
Koven, Charles D
Holm, Jennifer A
Fisher, Rosie A
McDowell, Nate G
Chambers, Jeffrey
Leung, L. Ruby
description Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.
doi_str_mv 10.5194/gmd-16-4017-2023
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2838144173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757458716</galeid><doaj_id>oai_doaj_org_article_57c3c8a38bcd49df837fb26a6b077d1b</doaj_id><sourcerecordid>A757458716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</originalsourceid><addsrcrecordid>eNptksGL1DAYxYsouK7ePQa9uIeOSdMm7XFYZnVgRHDXc_j6Je1maJuapLJ78083dUR2QAJJePzyPvJ4WfaW0U3FmvJjP-qcibykTOYFLfiz7II1DcsbQfnzJ_eX2asQjpSKRgp5kf3akhHw3k6GDAb8ZKeewDx7l0QSwfcmrtIMHkYTjScmRDtCtG4infNkHmCKpFsmXCUYSHycDUFnHmyIZkJDRqfNsHosYd13hy_5zfZud0s-_Cw29Op19qKDIZg3f8_L7PvN7u76c374-ml_vT3kyGXF8wZ5VbYCZFmA0S2nBUJdajSaidoIqFAXUHBRYsWgYbQrJHa0pqxCKgWU_DLbn3y1g6OaffqEf1QOrPojON8r8NHiYFQlkWMNvG5Rl43uai67thAgWiqlZm3yenfycikMFdBGg_fopslgVClpShlP0PsTlML8saTY1NEtPkUUVFHzmpUlk0-oHtJkO3UuesDRBlRbWcmyqiUTidr8h0pLm9GmwaazST97cHX2IDHRPMQelhDU_vbbOUtPLHoXgjfdv3QYVWu3VOqWYkKt3VJrt_hv4LC_mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838144173</pqid></control><display><type>article</type><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><source>Publicly Available Content Database</source><creator>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby</creator><creatorcontrib>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-16-4017-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Carbon ; Carbon cycle ; Climate change ; Coexistence ; Demography ; Ecosystem dynamics ; Efficiency ; Energy ; Environment models ; ENVIRONMENTAL SCIENCES ; Forest ecosystems ; Forests ; Learning algorithms ; Leaves ; Machine learning ; Mathematical models ; Modelling ; Ocean bottom seismometers ; Optimization ; Parameter estimation ; Parameter identification ; Parameters ; Plants ; Seasonal variation ; Seasonal variations ; Simulation ; Simulators ; Terrestrial ecosystems ; Tropical forests ; Vegetation</subject><ispartof>Geoscientific Model Development, 2023-07, Vol.16 (14), p.4017-4040</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</cites><orcidid>0000-0003-1969-9889 ; 0000-0002-3221-9467 ; 0000-0002-6834-5844 ; 0000-0001-5062-6245 ; 0000-0001-5921-3068 ; 0000-0002-0642-650X ; 0000-0002-3367-0065 ; 0000000233670065 ; 0000000224694831 ; 0000000268345844 ; 000000020642650X ; 0000000159213068 ; 0000000150626245 ; 0000000319699889 ; 0000000232219467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2838144173/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2838144173?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1990013$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lingcheng</creatorcontrib><creatorcontrib>Fang, Yilin</creatorcontrib><creatorcontrib>Zheng, Zhonghua</creatorcontrib><creatorcontrib>Shi, Mingjie</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Holm, Jennifer A</creatorcontrib><creatorcontrib>Fisher, Rosie A</creatorcontrib><creatorcontrib>McDowell, Nate G</creatorcontrib><creatorcontrib>Chambers, Jeffrey</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><title>Geoscientific Model Development</title><description>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</description><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Coexistence</subject><subject>Demography</subject><subject>Ecosystem dynamics</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Environment models</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>Learning algorithms</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Ocean bottom seismometers</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Plants</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Terrestrial ecosystems</subject><subject>Tropical forests</subject><subject>Vegetation</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksGL1DAYxYsouK7ePQa9uIeOSdMm7XFYZnVgRHDXc_j6Je1maJuapLJ78083dUR2QAJJePzyPvJ4WfaW0U3FmvJjP-qcibykTOYFLfiz7II1DcsbQfnzJ_eX2asQjpSKRgp5kf3akhHw3k6GDAb8ZKeewDx7l0QSwfcmrtIMHkYTjScmRDtCtG4infNkHmCKpFsmXCUYSHycDUFnHmyIZkJDRqfNsHosYd13hy_5zfZud0s-_Cw29Op19qKDIZg3f8_L7PvN7u76c374-ml_vT3kyGXF8wZ5VbYCZFmA0S2nBUJdajSaidoIqFAXUHBRYsWgYbQrJHa0pqxCKgWU_DLbn3y1g6OaffqEf1QOrPojON8r8NHiYFQlkWMNvG5Rl43uai67thAgWiqlZm3yenfycikMFdBGg_fopslgVClpShlP0PsTlML8saTY1NEtPkUUVFHzmpUlk0-oHtJkO3UuesDRBlRbWcmyqiUTidr8h0pLm9GmwaazST97cHX2IDHRPMQelhDU_vbbOUtPLHoXgjfdv3QYVWu3VOqWYkKt3VJrt_hv4LC_mg</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Li, Lingcheng</creator><creator>Fang, Yilin</creator><creator>Zheng, Zhonghua</creator><creator>Shi, Mingjie</creator><creator>Longo, Marcos</creator><creator>Koven, Charles D</creator><creator>Holm, Jennifer A</creator><creator>Fisher, Rosie A</creator><creator>McDowell, Nate G</creator><creator>Chambers, Jeffrey</creator><creator>Leung, L. Ruby</creator><general>Copernicus GmbH</general><general>Copernicus Publications, EGU</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1969-9889</orcidid><orcidid>https://orcid.org/0000-0002-3221-9467</orcidid><orcidid>https://orcid.org/0000-0002-6834-5844</orcidid><orcidid>https://orcid.org/0000-0001-5062-6245</orcidid><orcidid>https://orcid.org/0000-0001-5921-3068</orcidid><orcidid>https://orcid.org/0000-0002-0642-650X</orcidid><orcidid>https://orcid.org/0000-0002-3367-0065</orcidid><orcidid>https://orcid.org/0000000233670065</orcidid><orcidid>https://orcid.org/0000000224694831</orcidid><orcidid>https://orcid.org/0000000268345844</orcidid><orcidid>https://orcid.org/000000020642650X</orcidid><orcidid>https://orcid.org/0000000159213068</orcidid><orcidid>https://orcid.org/0000000150626245</orcidid><orcidid>https://orcid.org/0000000319699889</orcidid><orcidid>https://orcid.org/0000000232219467</orcidid></search><sort><creationdate>20230717</creationdate><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><author>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Coexistence</topic><topic>Demography</topic><topic>Ecosystem dynamics</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Environment models</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>Learning algorithms</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Ocean bottom seismometers</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Plants</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Terrestrial ecosystems</topic><topic>Tropical forests</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingcheng</creatorcontrib><creatorcontrib>Fang, Yilin</creatorcontrib><creatorcontrib>Zheng, Zhonghua</creatorcontrib><creatorcontrib>Shi, Mingjie</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Holm, Jennifer A</creatorcontrib><creatorcontrib>Fisher, Rosie A</creatorcontrib><creatorcontrib>McDowell, Nate G</creatorcontrib><creatorcontrib>Chambers, Jeffrey</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lingcheng</au><au>Fang, Yilin</au><au>Zheng, Zhonghua</au><au>Shi, Mingjie</au><au>Longo, Marcos</au><au>Koven, Charles D</au><au>Holm, Jennifer A</au><au>Fisher, Rosie A</au><au>McDowell, Nate G</au><au>Chambers, Jeffrey</au><au>Leung, L. Ruby</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</atitle><jtitle>Geoscientific Model Development</jtitle><date>2023-07-17</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>4017</spage><epage>4040</epage><pages>4017-4040</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-16-4017-2023</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1969-9889</orcidid><orcidid>https://orcid.org/0000-0002-3221-9467</orcidid><orcidid>https://orcid.org/0000-0002-6834-5844</orcidid><orcidid>https://orcid.org/0000-0001-5062-6245</orcidid><orcidid>https://orcid.org/0000-0001-5921-3068</orcidid><orcidid>https://orcid.org/0000-0002-0642-650X</orcidid><orcidid>https://orcid.org/0000-0002-3367-0065</orcidid><orcidid>https://orcid.org/0000000233670065</orcidid><orcidid>https://orcid.org/0000000224694831</orcidid><orcidid>https://orcid.org/0000000268345844</orcidid><orcidid>https://orcid.org/000000020642650X</orcidid><orcidid>https://orcid.org/0000000159213068</orcidid><orcidid>https://orcid.org/0000000150626245</orcidid><orcidid>https://orcid.org/0000000319699889</orcidid><orcidid>https://orcid.org/0000000232219467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2023-07, Vol.16 (14), p.4017-4040
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2838144173
source Publicly Available Content Database
subjects Carbon
Carbon cycle
Climate change
Coexistence
Demography
Ecosystem dynamics
Efficiency
Energy
Environment models
ENVIRONMENTAL SCIENCES
Forest ecosystems
Forests
Learning algorithms
Leaves
Machine learning
Mathematical models
Modelling
Ocean bottom seismometers
Optimization
Parameter estimation
Parameter identification
Parameters
Plants
Seasonal variation
Seasonal variations
Simulation
Simulators
Terrestrial ecosystems
Tropical forests
Vegetation
title A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20approach%20targeting%20parameter%20estimation%20for%20plant%20functional%20type%20coexistence%20modeling%20using%20ELM-FATES%20(v2.0)&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Li,%20Lingcheng&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-07-17&rft.volume=16&rft.issue=14&rft.spage=4017&rft.epage=4040&rft.pages=4017-4040&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-16-4017-2023&rft_dat=%3Cgale_doaj_%3EA757458716%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838144173&rft_id=info:pmid/&rft_galeid=A757458716&rfr_iscdi=true