Loading…
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve t...
Saved in:
Published in: | Geoscientific Model Development 2023-07, Vol.16 (14), p.4017-4040 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43 |
container_end_page | 4040 |
container_issue | 14 |
container_start_page | 4017 |
container_title | Geoscientific Model Development |
container_volume | 16 |
creator | Li, Lingcheng Fang, Yilin Zheng, Zhonghua Shi, Mingjie Longo, Marcos Koven, Charles D Holm, Jennifer A Fisher, Rosie A McDowell, Nate G Chambers, Jeffrey Leung, L. Ruby |
description | Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change. |
doi_str_mv | 10.5194/gmd-16-4017-2023 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2838144173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757458716</galeid><doaj_id>oai_doaj_org_article_57c3c8a38bcd49df837fb26a6b077d1b</doaj_id><sourcerecordid>A757458716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</originalsourceid><addsrcrecordid>eNptksGL1DAYxYsouK7ePQa9uIeOSdMm7XFYZnVgRHDXc_j6Je1maJuapLJ78083dUR2QAJJePzyPvJ4WfaW0U3FmvJjP-qcibykTOYFLfiz7II1DcsbQfnzJ_eX2asQjpSKRgp5kf3akhHw3k6GDAb8ZKeewDx7l0QSwfcmrtIMHkYTjScmRDtCtG4infNkHmCKpFsmXCUYSHycDUFnHmyIZkJDRqfNsHosYd13hy_5zfZud0s-_Cw29Op19qKDIZg3f8_L7PvN7u76c374-ml_vT3kyGXF8wZ5VbYCZFmA0S2nBUJdajSaidoIqFAXUHBRYsWgYbQrJHa0pqxCKgWU_DLbn3y1g6OaffqEf1QOrPojON8r8NHiYFQlkWMNvG5Rl43uai67thAgWiqlZm3yenfycikMFdBGg_fopslgVClpShlP0PsTlML8saTY1NEtPkUUVFHzmpUlk0-oHtJkO3UuesDRBlRbWcmyqiUTidr8h0pLm9GmwaazST97cHX2IDHRPMQelhDU_vbbOUtPLHoXgjfdv3QYVWu3VOqWYkKt3VJrt_hv4LC_mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838144173</pqid></control><display><type>article</type><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><source>Publicly Available Content Database</source><creator>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby</creator><creatorcontrib>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-16-4017-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Carbon ; Carbon cycle ; Climate change ; Coexistence ; Demography ; Ecosystem dynamics ; Efficiency ; Energy ; Environment models ; ENVIRONMENTAL SCIENCES ; Forest ecosystems ; Forests ; Learning algorithms ; Leaves ; Machine learning ; Mathematical models ; Modelling ; Ocean bottom seismometers ; Optimization ; Parameter estimation ; Parameter identification ; Parameters ; Plants ; Seasonal variation ; Seasonal variations ; Simulation ; Simulators ; Terrestrial ecosystems ; Tropical forests ; Vegetation</subject><ispartof>Geoscientific Model Development, 2023-07, Vol.16 (14), p.4017-4040</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</cites><orcidid>0000-0003-1969-9889 ; 0000-0002-3221-9467 ; 0000-0002-6834-5844 ; 0000-0001-5062-6245 ; 0000-0001-5921-3068 ; 0000-0002-0642-650X ; 0000-0002-3367-0065 ; 0000000233670065 ; 0000000224694831 ; 0000000268345844 ; 000000020642650X ; 0000000159213068 ; 0000000150626245 ; 0000000319699889 ; 0000000232219467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2838144173/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2838144173?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1990013$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lingcheng</creatorcontrib><creatorcontrib>Fang, Yilin</creatorcontrib><creatorcontrib>Zheng, Zhonghua</creatorcontrib><creatorcontrib>Shi, Mingjie</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Holm, Jennifer A</creatorcontrib><creatorcontrib>Fisher, Rosie A</creatorcontrib><creatorcontrib>McDowell, Nate G</creatorcontrib><creatorcontrib>Chambers, Jeffrey</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><title>Geoscientific Model Development</title><description>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</description><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Coexistence</subject><subject>Demography</subject><subject>Ecosystem dynamics</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Environment models</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>Learning algorithms</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Ocean bottom seismometers</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Plants</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Terrestrial ecosystems</subject><subject>Tropical forests</subject><subject>Vegetation</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksGL1DAYxYsouK7ePQa9uIeOSdMm7XFYZnVgRHDXc_j6Je1maJuapLJ78083dUR2QAJJePzyPvJ4WfaW0U3FmvJjP-qcibykTOYFLfiz7II1DcsbQfnzJ_eX2asQjpSKRgp5kf3akhHw3k6GDAb8ZKeewDx7l0QSwfcmrtIMHkYTjScmRDtCtG4infNkHmCKpFsmXCUYSHycDUFnHmyIZkJDRqfNsHosYd13hy_5zfZud0s-_Cw29Op19qKDIZg3f8_L7PvN7u76c374-ml_vT3kyGXF8wZ5VbYCZFmA0S2nBUJdajSaidoIqFAXUHBRYsWgYbQrJHa0pqxCKgWU_DLbn3y1g6OaffqEf1QOrPojON8r8NHiYFQlkWMNvG5Rl43uai67thAgWiqlZm3yenfycikMFdBGg_fopslgVClpShlP0PsTlML8saTY1NEtPkUUVFHzmpUlk0-oHtJkO3UuesDRBlRbWcmyqiUTidr8h0pLm9GmwaazST97cHX2IDHRPMQelhDU_vbbOUtPLHoXgjfdv3QYVWu3VOqWYkKt3VJrt_hv4LC_mg</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Li, Lingcheng</creator><creator>Fang, Yilin</creator><creator>Zheng, Zhonghua</creator><creator>Shi, Mingjie</creator><creator>Longo, Marcos</creator><creator>Koven, Charles D</creator><creator>Holm, Jennifer A</creator><creator>Fisher, Rosie A</creator><creator>McDowell, Nate G</creator><creator>Chambers, Jeffrey</creator><creator>Leung, L. Ruby</creator><general>Copernicus GmbH</general><general>Copernicus Publications, EGU</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1969-9889</orcidid><orcidid>https://orcid.org/0000-0002-3221-9467</orcidid><orcidid>https://orcid.org/0000-0002-6834-5844</orcidid><orcidid>https://orcid.org/0000-0001-5062-6245</orcidid><orcidid>https://orcid.org/0000-0001-5921-3068</orcidid><orcidid>https://orcid.org/0000-0002-0642-650X</orcidid><orcidid>https://orcid.org/0000-0002-3367-0065</orcidid><orcidid>https://orcid.org/0000000233670065</orcidid><orcidid>https://orcid.org/0000000224694831</orcidid><orcidid>https://orcid.org/0000000268345844</orcidid><orcidid>https://orcid.org/000000020642650X</orcidid><orcidid>https://orcid.org/0000000159213068</orcidid><orcidid>https://orcid.org/0000000150626245</orcidid><orcidid>https://orcid.org/0000000319699889</orcidid><orcidid>https://orcid.org/0000000232219467</orcidid></search><sort><creationdate>20230717</creationdate><title>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</title><author>Li, Lingcheng ; Fang, Yilin ; Zheng, Zhonghua ; Shi, Mingjie ; Longo, Marcos ; Koven, Charles D ; Holm, Jennifer A ; Fisher, Rosie A ; McDowell, Nate G ; Chambers, Jeffrey ; Leung, L. Ruby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Coexistence</topic><topic>Demography</topic><topic>Ecosystem dynamics</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Environment models</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>Learning algorithms</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Ocean bottom seismometers</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Plants</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Terrestrial ecosystems</topic><topic>Tropical forests</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingcheng</creatorcontrib><creatorcontrib>Fang, Yilin</creatorcontrib><creatorcontrib>Zheng, Zhonghua</creatorcontrib><creatorcontrib>Shi, Mingjie</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Koven, Charles D</creatorcontrib><creatorcontrib>Holm, Jennifer A</creatorcontrib><creatorcontrib>Fisher, Rosie A</creatorcontrib><creatorcontrib>McDowell, Nate G</creatorcontrib><creatorcontrib>Chambers, Jeffrey</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lingcheng</au><au>Fang, Yilin</au><au>Zheng, Zhonghua</au><au>Shi, Mingjie</au><au>Longo, Marcos</au><au>Koven, Charles D</au><au>Holm, Jennifer A</au><au>Fisher, Rosie A</au><au>McDowell, Nate G</au><au>Chambers, Jeffrey</au><au>Leung, L. Ruby</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)</atitle><jtitle>Geoscientific Model Development</jtitle><date>2023-07-17</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>4017</spage><epage>4040</epage><pages>4017-4040</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. However, realistically simulating the dynamics of competition and coexistence between different plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether plant trait relationships established from field measurements can constrain ELM-FATES simulations and (2) whether machine learning (ML)-based surrogate models can emulate the complex ELM-FATES model and optimize parameter selections to improve PFT coexistence modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-OBS) consideration of observed trait relationships, we found that accounting for these relationships slightly improves the simulations of water, energy, and carbon variables when compared to observations but degrades the simulation of PFT coexistence. Using ML-based surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES and conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The proportion of PFT coexistence experiments significantly increased from 21 % in Exp-CTR to 73 % in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with observations (within 15 % tolerance), 33 % of the Exp-ML experiments were retained, which is a significant improvement compared to the 1.4 % in Exp-CTR. Exp-ML also accurately reproduces the annual means and seasonal variations in water, energy, and carbon fluxes and the field inventory of aboveground biomass. This study represents a reproducible method that utilizes machine learning to identify parameter values that improve model fidelity against observations and PFT coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES and has significant implications for modeling the response and feedbacks of ecosystem dynamics to climate change.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-16-4017-2023</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1969-9889</orcidid><orcidid>https://orcid.org/0000-0002-3221-9467</orcidid><orcidid>https://orcid.org/0000-0002-6834-5844</orcidid><orcidid>https://orcid.org/0000-0001-5062-6245</orcidid><orcidid>https://orcid.org/0000-0001-5921-3068</orcidid><orcidid>https://orcid.org/0000-0002-0642-650X</orcidid><orcidid>https://orcid.org/0000-0002-3367-0065</orcidid><orcidid>https://orcid.org/0000000233670065</orcidid><orcidid>https://orcid.org/0000000224694831</orcidid><orcidid>https://orcid.org/0000000268345844</orcidid><orcidid>https://orcid.org/000000020642650X</orcidid><orcidid>https://orcid.org/0000000159213068</orcidid><orcidid>https://orcid.org/0000000150626245</orcidid><orcidid>https://orcid.org/0000000319699889</orcidid><orcidid>https://orcid.org/0000000232219467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2023-07, Vol.16 (14), p.4017-4040 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2838144173 |
source | Publicly Available Content Database |
subjects | Carbon Carbon cycle Climate change Coexistence Demography Ecosystem dynamics Efficiency Energy Environment models ENVIRONMENTAL SCIENCES Forest ecosystems Forests Learning algorithms Leaves Machine learning Mathematical models Modelling Ocean bottom seismometers Optimization Parameter estimation Parameter identification Parameters Plants Seasonal variation Seasonal variations Simulation Simulators Terrestrial ecosystems Tropical forests Vegetation |
title | A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20approach%20targeting%20parameter%20estimation%20for%20plant%20functional%20type%20coexistence%20modeling%20using%20ELM-FATES%20(v2.0)&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Li,%20Lingcheng&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-07-17&rft.volume=16&rft.issue=14&rft.spage=4017&rft.epage=4040&rft.pages=4017-4040&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-16-4017-2023&rft_dat=%3Cgale_doaj_%3EA757458716%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3753-9c354b6a742aedb302ca84dced168e6a5cd2a2364c51a910f27cf08015c076a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838144173&rft_id=info:pmid/&rft_galeid=A757458716&rfr_iscdi=true |