Loading…

Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control

This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several su...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2019-04, Vol.96 (2), p.1665-1675
Main Authors: Xu, Liguang, Liu, Wen, Hu, Hongxiao, Zhou, Weisong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83
cites cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83
container_end_page 1675
container_issue 2
container_start_page 1665
container_title Nonlinear dynamics
container_volume 96
creator Xu, Liguang
Liu, Wen
Hu, Hongxiao
Zhou, Weisong
description This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.
doi_str_mv 10.1007/s11071-019-04877-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838455995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838455995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19Gbpm2apQzjAwbcKMwupHlIhk5Tk1Tsv7c6A-5c3c05H9yD0DWFWwrA7xKlwCkBKgiUDedkOkELWnFGilpsT9ECRFESELA9Rxcp7QCAFdAsUFh_DaG3ffaqw2OX_V5li9sw9saa3qaEg8MuKp196FVHQjQ2YuOds_FopSllu0_40ys82OiD8Vp13YR9n23c-5xnEOvQ5xi6S3TmVJfs1fEu0dvD-nX1RDYvj8-r-w3RjIpMmBMGKOM151ZxrUqnHee1FqKsiwq0qh0UlWEN17VmorbAnKG6VUq1urUNW6Kbw-4Qw8doU5a7MMb5gySLhjVlVQlRzVRxoHQMKUXr5BDnAnGSFORPWHkIK-ew8jesnGaJHaQ0w_27jX_T_1jf7JGAfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838455995</pqid></control><display><type>article</type><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><source>Springer Nature</source><creator>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</creator><creatorcontrib>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</creatorcontrib><description>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-04877-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Dynamical Systems ; Engineering ; Liapunov functions ; Mechanical Engineering ; Neural networks ; Original Paper ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-04, Vol.96 (2), p.1665-1675</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</citedby><cites>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</cites><orcidid>0000-0001-8444-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Hu, Hongxiao</creatorcontrib><creatorcontrib>Zhou, Weisong</creatorcontrib><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Liapunov functions</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcB19Gbpm2apQzjAwbcKMwupHlIhk5Tk1Tsv7c6A-5c3c05H9yD0DWFWwrA7xKlwCkBKgiUDedkOkELWnFGilpsT9ECRFESELA9Rxcp7QCAFdAsUFh_DaG3ffaqw2OX_V5li9sw9saa3qaEg8MuKp196FVHQjQ2YuOds_FopSllu0_40ys82OiD8Vp13YR9n23c-5xnEOvQ5xi6S3TmVJfs1fEu0dvD-nX1RDYvj8-r-w3RjIpMmBMGKOM151ZxrUqnHee1FqKsiwq0qh0UlWEN17VmorbAnKG6VUq1urUNW6Kbw-4Qw8doU5a7MMb5gySLhjVlVQlRzVRxoHQMKUXr5BDnAnGSFORPWHkIK-ew8jesnGaJHaQ0w_27jX_T_1jf7JGAfQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Xu, Liguang</creator><creator>Liu, Wen</creator><creator>Hu, Hongxiao</creator><creator>Zhou, Weisong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8444-372X</orcidid></search><sort><creationdate>20190401</creationdate><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><author>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Liapunov functions</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Hu, Hongxiao</creatorcontrib><creatorcontrib>Zhou, Weisong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Liguang</au><au>Liu, Wen</au><au>Hu, Hongxiao</au><au>Zhou, Weisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>96</volume><issue>2</issue><spage>1665</spage><epage>1675</epage><pages>1665-1675</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-04877-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8444-372X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-04, Vol.96 (2), p.1665-1675
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2838455995
source Springer Nature
subjects Automotive Engineering
Classical Mechanics
Control
Control systems
Dynamical Systems
Engineering
Liapunov functions
Mechanical Engineering
Neural networks
Original Paper
Vibration
title Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20ultimate%20boundedness%20of%20fractional-order%20differential%20systems%20via%20periodically%20intermittent%20control&rft.jtitle=Nonlinear%20dynamics&rft.au=Xu,%20Liguang&rft.date=2019-04-01&rft.volume=96&rft.issue=2&rft.spage=1665&rft.epage=1675&rft.pages=1665-1675&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-04877-y&rft_dat=%3Cproquest_cross%3E2838455995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838455995&rft_id=info:pmid/&rfr_iscdi=true