Loading…
Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control
This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several su...
Saved in:
Published in: | Nonlinear dynamics 2019-04, Vol.96 (2), p.1665-1675 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83 |
container_end_page | 1675 |
container_issue | 2 |
container_start_page | 1665 |
container_title | Nonlinear dynamics |
container_volume | 96 |
creator | Xu, Liguang Liu, Wen Hu, Hongxiao Zhou, Weisong |
description | This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results. |
doi_str_mv | 10.1007/s11071-019-04877-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838455995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838455995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19Gbpm2apQzjAwbcKMwupHlIhk5Tk1Tsv7c6A-5c3c05H9yD0DWFWwrA7xKlwCkBKgiUDedkOkELWnFGilpsT9ECRFESELA9Rxcp7QCAFdAsUFh_DaG3ffaqw2OX_V5li9sw9saa3qaEg8MuKp196FVHQjQ2YuOds_FopSllu0_40ys82OiD8Vp13YR9n23c-5xnEOvQ5xi6S3TmVJfs1fEu0dvD-nX1RDYvj8-r-w3RjIpMmBMGKOM151ZxrUqnHee1FqKsiwq0qh0UlWEN17VmorbAnKG6VUq1urUNW6Kbw-4Qw8doU5a7MMb5gySLhjVlVQlRzVRxoHQMKUXr5BDnAnGSFORPWHkIK-ew8jesnGaJHaQ0w_27jX_T_1jf7JGAfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838455995</pqid></control><display><type>article</type><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><source>Springer Nature</source><creator>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</creator><creatorcontrib>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</creatorcontrib><description>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-04877-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Dynamical Systems ; Engineering ; Liapunov functions ; Mechanical Engineering ; Neural networks ; Original Paper ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-04, Vol.96 (2), p.1665-1675</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</citedby><cites>FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</cites><orcidid>0000-0001-8444-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Hu, Hongxiao</creatorcontrib><creatorcontrib>Zhou, Weisong</creatorcontrib><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Liapunov functions</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcB19Gbpm2apQzjAwbcKMwupHlIhk5Tk1Tsv7c6A-5c3c05H9yD0DWFWwrA7xKlwCkBKgiUDedkOkELWnFGilpsT9ECRFESELA9Rxcp7QCAFdAsUFh_DaG3ffaqw2OX_V5li9sw9saa3qaEg8MuKp196FVHQjQ2YuOds_FopSllu0_40ys82OiD8Vp13YR9n23c-5xnEOvQ5xi6S3TmVJfs1fEu0dvD-nX1RDYvj8-r-w3RjIpMmBMGKOM151ZxrUqnHee1FqKsiwq0qh0UlWEN17VmorbAnKG6VUq1urUNW6Kbw-4Qw8doU5a7MMb5gySLhjVlVQlRzVRxoHQMKUXr5BDnAnGSFORPWHkIK-ew8jesnGaJHaQ0w_27jX_T_1jf7JGAfQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Xu, Liguang</creator><creator>Liu, Wen</creator><creator>Hu, Hongxiao</creator><creator>Zhou, Weisong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8444-372X</orcidid></search><sort><creationdate>20190401</creationdate><title>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</title><author>Xu, Liguang ; Liu, Wen ; Hu, Hongxiao ; Zhou, Weisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Liapunov functions</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Hu, Hongxiao</creatorcontrib><creatorcontrib>Zhou, Weisong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Liguang</au><au>Liu, Wen</au><au>Hu, Hongxiao</au><au>Zhou, Weisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>96</volume><issue>2</issue><spage>1665</spage><epage>1675</epage><pages>1665-1675</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-04877-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8444-372X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2019-04, Vol.96 (2), p.1665-1675 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2838455995 |
source | Springer Nature |
subjects | Automotive Engineering Classical Mechanics Control Control systems Dynamical Systems Engineering Liapunov functions Mechanical Engineering Neural networks Original Paper Vibration |
title | Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20ultimate%20boundedness%20of%20fractional-order%20differential%20systems%20via%20periodically%20intermittent%20control&rft.jtitle=Nonlinear%20dynamics&rft.au=Xu,%20Liguang&rft.date=2019-04-01&rft.volume=96&rft.issue=2&rft.spage=1665&rft.epage=1675&rft.pages=1665-1675&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-04877-y&rft_dat=%3Cproquest_cross%3E2838455995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3f9d0137677ea7ca4fcf776c9946250ca6f025d387c6c396e03fd1cbaaabcbe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838455995&rft_id=info:pmid/&rfr_iscdi=true |