Loading…

Harris skewed normal distribution

In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applica...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2023-09, Vol.52 (18), p.6597-6615
Main Authors: Al-Kandari, Noriah, Aly, Emad-Eldin A. A., Benkherouf, Lakdere
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3
cites cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3
container_end_page 6615
container_issue 18
container_start_page 6597
container_title Communications in statistics. Theory and methods
container_volume 52
creator Al-Kandari, Noriah
Aly, Emad-Eldin A. A.
Benkherouf, Lakdere
description In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.
doi_str_mv 10.1080/03610926.2022.2032169
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838499768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838499768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfQah47kzymjS9KUOdMPCi4C2kTQKZXTNfWsa-vS2bVy_vXX7__-P9CLlldMGoog8UJKMVlwtOOR8HcCarMzJjAnheMPF1TmYTk0_QJblKaUMpE6WCGblbGcSQsvTt9s5mXcStaTMbUo-hHvoQu2ty4U2b3M1pz8nny_PHcpWv31_flk_rvAFQfQ6W-sJxJYQC2jAOwpdGSpC1tCAcOF41TBS09lCKworCe1-DGnnmlXMW5uT-2LvD-DO41OtNHLAbT2quQBVVVUo1UuJINRhTQuf1DsPW4EEzqicb-s-Gnmzok40x93jMhc5PP-4jtlb35tBG9Gi6JiQN_1f8ArAZZE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838499768</pqid></control><display><type>article</type><title>Harris skewed normal distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</creator><creatorcontrib>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</creatorcontrib><description>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2022.2032169</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>EM algorithm ; Harris distribution ; infinite divisible ; maximum likelihood estimators ; moment generating function ; Normal distribution ; Probability density functions ; random sums ; Skewed distributions ; Statistical analysis</subject><ispartof>Communications in statistics. Theory and methods, 2023-09, Vol.52 (18), p.6597-6615</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</citedby><cites>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</cites><orcidid>0000-0003-4706-8080 ; 0000-0003-1148-6299 ; 0000-0001-6803-8740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Al-Kandari, Noriah</creatorcontrib><creatorcontrib>Aly, Emad-Eldin A. A.</creatorcontrib><creatorcontrib>Benkherouf, Lakdere</creatorcontrib><title>Harris skewed normal distribution</title><title>Communications in statistics. Theory and methods</title><description>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</description><subject>EM algorithm</subject><subject>Harris distribution</subject><subject>infinite divisible</subject><subject>maximum likelihood estimators</subject><subject>moment generating function</subject><subject>Normal distribution</subject><subject>Probability density functions</subject><subject>random sums</subject><subject>Skewed distributions</subject><subject>Statistical analysis</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfQah47kzymjS9KUOdMPCi4C2kTQKZXTNfWsa-vS2bVy_vXX7__-P9CLlldMGoog8UJKMVlwtOOR8HcCarMzJjAnheMPF1TmYTk0_QJblKaUMpE6WCGblbGcSQsvTt9s5mXcStaTMbUo-hHvoQu2ty4U2b3M1pz8nny_PHcpWv31_flk_rvAFQfQ6W-sJxJYQC2jAOwpdGSpC1tCAcOF41TBS09lCKworCe1-DGnnmlXMW5uT-2LvD-DO41OtNHLAbT2quQBVVVUo1UuJINRhTQuf1DsPW4EEzqicb-s-Gnmzok40x93jMhc5PP-4jtlb35tBG9Gi6JiQN_1f8ArAZZE8</recordid><startdate>20230917</startdate><enddate>20230917</enddate><creator>Al-Kandari, Noriah</creator><creator>Aly, Emad-Eldin A. A.</creator><creator>Benkherouf, Lakdere</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4706-8080</orcidid><orcidid>https://orcid.org/0000-0003-1148-6299</orcidid><orcidid>https://orcid.org/0000-0001-6803-8740</orcidid></search><sort><creationdate>20230917</creationdate><title>Harris skewed normal distribution</title><author>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>EM algorithm</topic><topic>Harris distribution</topic><topic>infinite divisible</topic><topic>maximum likelihood estimators</topic><topic>moment generating function</topic><topic>Normal distribution</topic><topic>Probability density functions</topic><topic>random sums</topic><topic>Skewed distributions</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Kandari, Noriah</creatorcontrib><creatorcontrib>Aly, Emad-Eldin A. A.</creatorcontrib><creatorcontrib>Benkherouf, Lakdere</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Kandari, Noriah</au><au>Aly, Emad-Eldin A. A.</au><au>Benkherouf, Lakdere</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harris skewed normal distribution</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2023-09-17</date><risdate>2023</risdate><volume>52</volume><issue>18</issue><spage>6597</spage><epage>6615</epage><pages>6597-6615</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2022.2032169</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4706-8080</orcidid><orcidid>https://orcid.org/0000-0003-1148-6299</orcidid><orcidid>https://orcid.org/0000-0001-6803-8740</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2023-09, Vol.52 (18), p.6597-6615
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_2838499768
source Taylor and Francis Science and Technology Collection
subjects EM algorithm
Harris distribution
infinite divisible
maximum likelihood estimators
moment generating function
Normal distribution
Probability density functions
random sums
Skewed distributions
Statistical analysis
title Harris skewed normal distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harris%20skewed%20normal%20distribution&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Al-Kandari,%20Noriah&rft.date=2023-09-17&rft.volume=52&rft.issue=18&rft.spage=6597&rft.epage=6615&rft.pages=6597-6615&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2022.2032169&rft_dat=%3Cproquest_cross%3E2838499768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838499768&rft_id=info:pmid/&rfr_iscdi=true