Loading…
Harris skewed normal distribution
In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applica...
Saved in:
Published in: | Communications in statistics. Theory and methods 2023-09, Vol.52 (18), p.6597-6615 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3 |
container_end_page | 6615 |
container_issue | 18 |
container_start_page | 6597 |
container_title | Communications in statistics. Theory and methods |
container_volume | 52 |
creator | Al-Kandari, Noriah Aly, Emad-Eldin A. A. Benkherouf, Lakdere |
description | In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets. |
doi_str_mv | 10.1080/03610926.2022.2032169 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838499768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838499768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfQah47kzymjS9KUOdMPCi4C2kTQKZXTNfWsa-vS2bVy_vXX7__-P9CLlldMGoog8UJKMVlwtOOR8HcCarMzJjAnheMPF1TmYTk0_QJblKaUMpE6WCGblbGcSQsvTt9s5mXcStaTMbUo-hHvoQu2ty4U2b3M1pz8nny_PHcpWv31_flk_rvAFQfQ6W-sJxJYQC2jAOwpdGSpC1tCAcOF41TBS09lCKworCe1-DGnnmlXMW5uT-2LvD-DO41OtNHLAbT2quQBVVVUo1UuJINRhTQuf1DsPW4EEzqicb-s-Gnmzok40x93jMhc5PP-4jtlb35tBG9Gi6JiQN_1f8ArAZZE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838499768</pqid></control><display><type>article</type><title>Harris skewed normal distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</creator><creatorcontrib>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</creatorcontrib><description>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2022.2032169</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>EM algorithm ; Harris distribution ; infinite divisible ; maximum likelihood estimators ; moment generating function ; Normal distribution ; Probability density functions ; random sums ; Skewed distributions ; Statistical analysis</subject><ispartof>Communications in statistics. Theory and methods, 2023-09, Vol.52 (18), p.6597-6615</ispartof><rights>2022 Taylor & Francis Group, LLC 2022</rights><rights>2022 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</citedby><cites>FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</cites><orcidid>0000-0003-4706-8080 ; 0000-0003-1148-6299 ; 0000-0001-6803-8740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Al-Kandari, Noriah</creatorcontrib><creatorcontrib>Aly, Emad-Eldin A. A.</creatorcontrib><creatorcontrib>Benkherouf, Lakdere</creatorcontrib><title>Harris skewed normal distribution</title><title>Communications in statistics. Theory and methods</title><description>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</description><subject>EM algorithm</subject><subject>Harris distribution</subject><subject>infinite divisible</subject><subject>maximum likelihood estimators</subject><subject>moment generating function</subject><subject>Normal distribution</subject><subject>Probability density functions</subject><subject>random sums</subject><subject>Skewed distributions</subject><subject>Statistical analysis</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfQah47kzymjS9KUOdMPCi4C2kTQKZXTNfWsa-vS2bVy_vXX7__-P9CLlldMGoog8UJKMVlwtOOR8HcCarMzJjAnheMPF1TmYTk0_QJblKaUMpE6WCGblbGcSQsvTt9s5mXcStaTMbUo-hHvoQu2ty4U2b3M1pz8nny_PHcpWv31_flk_rvAFQfQ6W-sJxJYQC2jAOwpdGSpC1tCAcOF41TBS09lCKworCe1-DGnnmlXMW5uT-2LvD-DO41OtNHLAbT2quQBVVVUo1UuJINRhTQuf1DsPW4EEzqicb-s-Gnmzok40x93jMhc5PP-4jtlb35tBG9Gi6JiQN_1f8ArAZZE8</recordid><startdate>20230917</startdate><enddate>20230917</enddate><creator>Al-Kandari, Noriah</creator><creator>Aly, Emad-Eldin A. A.</creator><creator>Benkherouf, Lakdere</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4706-8080</orcidid><orcidid>https://orcid.org/0000-0003-1148-6299</orcidid><orcidid>https://orcid.org/0000-0001-6803-8740</orcidid></search><sort><creationdate>20230917</creationdate><title>Harris skewed normal distribution</title><author>Al-Kandari, Noriah ; Aly, Emad-Eldin A. A. ; Benkherouf, Lakdere</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>EM algorithm</topic><topic>Harris distribution</topic><topic>infinite divisible</topic><topic>maximum likelihood estimators</topic><topic>moment generating function</topic><topic>Normal distribution</topic><topic>Probability density functions</topic><topic>random sums</topic><topic>Skewed distributions</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Kandari, Noriah</creatorcontrib><creatorcontrib>Aly, Emad-Eldin A. A.</creatorcontrib><creatorcontrib>Benkherouf, Lakdere</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Kandari, Noriah</au><au>Aly, Emad-Eldin A. A.</au><au>Benkherouf, Lakdere</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harris skewed normal distribution</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2023-09-17</date><risdate>2023</risdate><volume>52</volume><issue>18</issue><spage>6597</spage><epage>6615</epage><pages>6597-6615</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this paper a new family of Harris skewed normal distributions (HSND) is proposed. The probability density function of the HSND can be both positively and negatively skewed, unimodal and multimodal and can be symmetric with heavy tails. Monte Carlo simulations are conducted to evaluate the applicability of the proposed family of distributions. The HSND family is used to fit three different real data sets.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610926.2022.2032169</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4706-8080</orcidid><orcidid>https://orcid.org/0000-0003-1148-6299</orcidid><orcidid>https://orcid.org/0000-0001-6803-8740</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2023-09, Vol.52 (18), p.6597-6615 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_proquest_journals_2838499768 |
source | Taylor and Francis Science and Technology Collection |
subjects | EM algorithm Harris distribution infinite divisible maximum likelihood estimators moment generating function Normal distribution Probability density functions random sums Skewed distributions Statistical analysis |
title | Harris skewed normal distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harris%20skewed%20normal%20distribution&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Al-Kandari,%20Noriah&rft.date=2023-09-17&rft.volume=52&rft.issue=18&rft.spage=6597&rft.epage=6615&rft.pages=6597-6615&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2022.2032169&rft_dat=%3Cproquest_cross%3E2838499768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3d0f4e2855830c1235f7a6636b6d35e3e29c1540bf3754d54fffb388551f8eed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838499768&rft_id=info:pmid/&rfr_iscdi=true |