Loading…
A mechanical equivalence similitude method for dynamic responses of high-speed train middle vehicles in a collision
Predicting the dynamic behavior of train collisions using similitude theory is a valuable design tool. However, several limitations and difficulties persist when designing a similar train model. This study proposes a mechanical equivalence similitude method when a train crashes into a rigid obstacle...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit Journal of rail and rapid transit, 2023-08, Vol.237 (7), p.920-931 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting the dynamic behavior of train collisions using similitude theory is a valuable design tool. However, several limitations and difficulties persist when designing a similar train model. This study proposes a mechanical equivalence similitude method when a train crashes into a rigid obstacle longitudinally, which can be used to establish similitude laws and predict the dynamic responses of a full-scale high-speed train middle vehicle. This method includes impact force equivalence (IFE) and finite-element stiffness equivalence (FESE). The aim is to overcome the insufficient accuracy of establishing a similar train model using traditional similitude methods. First, the similitude laws of the end energy absorber and the vehicle body were deduced. Subsequently, the 1/8th equivalent similar middle vehicle model of the high-speed train was established. The IFE method was employed to design a 1/8th equivalent similar model of the end energy absorber. Based on the FESE method, a 1/8th equivalent similar model of the middle vehicle body was built. Finally, the accuracy and effectiveness of a similar train model were validated through numerical simulations and tests. Comparing the results of the prototype, the errors of the dynamic responses were less than 4%, indicating that the mechanical response equivalence similitude method is effective for constructing a similar train model. |
---|---|
ISSN: | 0954-4097 2041-3017 |
DOI: | 10.1177/09544097221146417 |