Loading…

Influence of North Pacific subtropical mode water variability on the surface mixed layer through the heaving of the upper thermocline on decadal timescales

Decadal variability of the North Pacific subtropical mode water (STMW) and its influence on the upper thermocline and mixed layer are examined in a four-dimensional variational ocean re-analysis for the Western North Pacific over 30 years (FORA–WNP30). The STMW that forms south of the Kuroshio Exten...

Full description

Saved in:
Bibliographic Details
Published in:Journal of oceanography 2023-08, Vol.79 (4), p.379-394
Main Authors: Kobashi, Fumiaki, Usui, Norihisa, Akimoto, Nanami, Iwasaka, Naoto, Suga, Toshio, Oka, Eitarou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decadal variability of the North Pacific subtropical mode water (STMW) and its influence on the upper thermocline and mixed layer are examined in a four-dimensional variational ocean re-analysis for the Western North Pacific over 30 years (FORA–WNP30). The STMW that forms south of the Kuroshio Extension becomes thick/cold and thin/warm on decadal timescales. These variations are subducted and advected to the south, where thick (thin) STMW causes the upper thermocline to heave up (down) above the STMW, producing cold (warm) temperature anomalies at subsurface depths, with especially large anomalies at the depths of the seasonal thermocline. Temperature anomalies also appear in the mixed layer from March to November, except in September. These anomalies have the same sign as the temperature anomalies of the STMW, although they are due not to the reemergence of the STMW at the surface but to the heaving of the upper thermocline. In the FORA–WNP30, because the formation of the mixed layer temperature anomalies owes much to the increment introduced by data assimilation, the mechanism remains unclear. A heat budget analysis of the mixed layer, however, suggests the importance of entrainment and/or vertical diffusion at the base of the mixed layer for conveying temperature anomalies from the upper thermocline to the mixed layer. The STMW also affects the mixed layer depth. A thick (thin) STMW shoals (deepens) the seasonal thermocline, enhancing (weakening) stratification at depths below the mixed layer and thus hindering (favoring) mixed layer development from July to September.
ISSN:0916-8370
1573-868X
DOI:10.1007/s10872-022-00677-y