Loading…

NDVI and grain fill duration are important to be considered in breeding for terminal heat stress tolerance in wheat

Terminal heat stress is a major constraint for taking a profitable crop of wheat by small and marginal farmers in the Indo‐Gangetic Plains of south Asia. Hence, breeders remain in constant search for heat‐tolerant genotypes. This study was done with the purpose to find out high‐yielding wheat genoty...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agronomy and crop science (1986) 2023-08, Vol.209 (4), p.489-501
Main Authors: Kumar, Monu, Mishra, Vinod Kumar, Chand, Ramesh, Sharma, Sandeep, Kumar, Uttam, Jaiswal, Jai Prakash, Choudhary, Mukesh, Mahato, Anima, Ashutosh, Singh, Prashant, Joshi, Arun Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terminal heat stress is a major constraint for taking a profitable crop of wheat by small and marginal farmers in the Indo‐Gangetic Plains of south Asia. Hence, breeders remain in constant search for heat‐tolerant genotypes. This study was done with the purpose to find out high‐yielding wheat genotypes that perform stably under terminal heat stress as well as to conclude an easy phenotyping trait for this objective. A cross (HUW 234 × HUW 468) was made using two popular cultivars of the eastern Gangetic Plains of India. HUW 234 carries terminal heat tolerance whereas, HUW 468 is high yielding but suffers from terminal heat stress when planted late. So obtained 167 recombinant inbred lines (RILs) were exposed to both timely sown (TS) and late sown (LS) conditions at three locations for two consecutive years 2016–17 and 2017–18 at Varanasi (Uttar Pradesh), Jabalpur (Madhya Pradesh) and Pusa, Samastipur (Bihar). Combined ANOVA revealed that normalized difference vegetation index (NDVI) at anthesis stage (NDVI_AH) and grain filling duration (GFD) was significant for genotype (G), environment (E) and genotype × environment interaction (GEI). Likewise, differences were significant for grain yield (GY) and 1000‐grain weight (TGW). AMMI analysis revealed similar results. However, NDVI_AH showed low variation under heat stressed late sown conditions. Furthermore, the which‐won‐where model and mean versus stability identified the best performing, above‐average yielding and stable lines across the environments. Correlation among measured traits revealed that NDVI_AH had a significant association with GY in most of the environments. Several lines that performed superior to better parent for GY also showed higher values for NDVI_AH and GFD. The study demonstrates that NDVI_AH and GFD appear to be important traits to be considered while breeding for terminal heat stress tolerance in wheat.
ISSN:0931-2250
1439-037X
DOI:10.1111/jac.12637