Loading…

Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models

We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically T...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Pranav Narayanan Venkit, Srinath, Mukund, Wilson, Shomir
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pranav Narayanan Venkit
Srinath, Mukund
Wilson, Shomir
description We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically Twitter and Reddit, in order to gain insight into how disability bias is disseminated in real-world social settings. We then create the \textit{Bias Identification Test in Sentiment} (BITS) corpus to quantify explicit disability bias in any sentiment analysis and toxicity detection models. Our study utilizes BITS to uncover significant biases in four open AIaaS (AI as a Service) sentiment analysis tools, namely TextBlob, VADER, Google Cloud Natural Language API, DistilBERT and two toxicity detection models, namely two versions of Toxic-BERT. Our findings indicate that all of these models exhibit statistically significant explicit bias against PWD.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2839573766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839573766</sourcerecordid><originalsourceid>FETCH-proquest_journals_28395737663</originalsourceid><addsrcrecordid>eNqNjM0KgkAUhYcgSMp3uNBasJn8qZ2V0aZV7WPMEa6MM-YdQd8-ix6gzfk48J0zYx4XYhOkW84XzCeqwzDkccKjSHgMs97ZRjpVQlZohdTsITOQD622nXRoDdjqW_GJDk5IskCNboQDSlIEaOCmjMNmCpCmhLsdPuo43Ug9EhJcbak0rdi8kpqU_-OSrc_5_XgJ2s6-ekXuUdu-mzb04KnYRYlI4lj8Z70Be4xIHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839573766</pqid></control><display><type>article</type><title>Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models</title><source>Publicly Available Content (ProQuest)</source><creator>Pranav Narayanan Venkit ; Srinath, Mukund ; Wilson, Shomir</creator><creatorcontrib>Pranav Narayanan Venkit ; Srinath, Mukund ; Wilson, Shomir</creatorcontrib><description>We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically Twitter and Reddit, in order to gain insight into how disability bias is disseminated in real-world social settings. We then create the \textit{Bias Identification Test in Sentiment} (BITS) corpus to quantify explicit disability bias in any sentiment analysis and toxicity detection models. Our study utilizes BITS to uncover significant biases in four open AIaaS (AI as a Service) sentiment analysis tools, namely TextBlob, VADER, Google Cloud Natural Language API, DistilBERT and two toxicity detection models, namely two versions of Toxic-BERT. Our findings indicate that all of these models exhibit statistically significant explicit bias against PWD.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Cloud computing ; Data mining ; Perturbation ; Sensitivity analysis ; Sentiment analysis ; Toxicity</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2839573766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pranav Narayanan Venkit</creatorcontrib><creatorcontrib>Srinath, Mukund</creatorcontrib><creatorcontrib>Wilson, Shomir</creatorcontrib><title>Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models</title><title>arXiv.org</title><description>We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically Twitter and Reddit, in order to gain insight into how disability bias is disseminated in real-world social settings. We then create the \textit{Bias Identification Test in Sentiment} (BITS) corpus to quantify explicit disability bias in any sentiment analysis and toxicity detection models. Our study utilizes BITS to uncover significant biases in four open AIaaS (AI as a Service) sentiment analysis tools, namely TextBlob, VADER, Google Cloud Natural Language API, DistilBERT and two toxicity detection models, namely two versions of Toxic-BERT. Our findings indicate that all of these models exhibit statistically significant explicit bias against PWD.</description><subject>Bias</subject><subject>Cloud computing</subject><subject>Data mining</subject><subject>Perturbation</subject><subject>Sensitivity analysis</subject><subject>Sentiment analysis</subject><subject>Toxicity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM0KgkAUhYcgSMp3uNBasJn8qZ2V0aZV7WPMEa6MM-YdQd8-ix6gzfk48J0zYx4XYhOkW84XzCeqwzDkccKjSHgMs97ZRjpVQlZohdTsITOQD622nXRoDdjqW_GJDk5IskCNboQDSlIEaOCmjMNmCpCmhLsdPuo43Ug9EhJcbak0rdi8kpqU_-OSrc_5_XgJ2s6-ekXuUdu-mzb04KnYRYlI4lj8Z70Be4xIHw</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Pranav Narayanan Venkit</creator><creator>Srinath, Mukund</creator><creator>Wilson, Shomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230718</creationdate><title>Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models</title><author>Pranav Narayanan Venkit ; Srinath, Mukund ; Wilson, Shomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28395737663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Cloud computing</topic><topic>Data mining</topic><topic>Perturbation</topic><topic>Sensitivity analysis</topic><topic>Sentiment analysis</topic><topic>Toxicity</topic><toplevel>online_resources</toplevel><creatorcontrib>Pranav Narayanan Venkit</creatorcontrib><creatorcontrib>Srinath, Mukund</creatorcontrib><creatorcontrib>Wilson, Shomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pranav Narayanan Venkit</au><au>Srinath, Mukund</au><au>Wilson, Shomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models</atitle><jtitle>arXiv.org</jtitle><date>2023-07-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically Twitter and Reddit, in order to gain insight into how disability bias is disseminated in real-world social settings. We then create the \textit{Bias Identification Test in Sentiment} (BITS) corpus to quantify explicit disability bias in any sentiment analysis and toxicity detection models. Our study utilizes BITS to uncover significant biases in four open AIaaS (AI as a Service) sentiment analysis tools, namely TextBlob, VADER, Google Cloud Natural Language API, DistilBERT and two toxicity detection models, namely two versions of Toxic-BERT. Our findings indicate that all of these models exhibit statistically significant explicit bias against PWD.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2839573766
source Publicly Available Content (ProQuest)
subjects Bias
Cloud computing
Data mining
Perturbation
Sensitivity analysis
Sentiment analysis
Toxicity
title Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20Ableism:%20An%20Exploration%20of%20Explicit%20Disability%20Biases%20in%20Sentiment%20and%20Toxicity%20Analysis%20Models&rft.jtitle=arXiv.org&rft.au=Pranav%20Narayanan%20Venkit&rft.date=2023-07-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2839573766%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28395737663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839573766&rft_id=info:pmid/&rfr_iscdi=true