Loading…
Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP2S6 and InZnO
In this paper, we demonstrate low-thermal-budget ferroelectric field-effect transistors (FeFETs) based on two-dimensional ferroelectric CuInP2S6 (CIPS) and oxide semiconductor InZnO (IZO). The CIPS/IZO FeFETs exhibit non-volatile memory windows of ~1 V, low off-state drain currents, and high carrier...
Saved in:
Published in: | arXiv.org 2023-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we demonstrate low-thermal-budget ferroelectric field-effect transistors (FeFETs) based on two-dimensional ferroelectric CuInP2S6 (CIPS) and oxide semiconductor InZnO (IZO). The CIPS/IZO FeFETs exhibit non-volatile memory windows of ~1 V, low off-state drain currents, and high carrier mobilities. The ferroelectric CIPS layer serves a dual purpose by providing electrostatic doping in IZO and acting as a passivation layer for the IZO channel. We also investigate the CIPS/IZO FeFETs as artificial synaptic devices for neural networks. The CIPS/IZO synapse demonstrates a sizeable dynamic ratio (125) and maintains stable multi-level states. Neural networks based on CIPS/IZO FeFETs achieve an accuracy rate of over 80% in recognizing MNIST handwritten digits. These ferroelectric transistors can be vertically stacked on silicon CMOS with a low thermal budget, offering broad applications in CMOS+X technologies and energy-efficient 3D neural networks. |
---|---|
ISSN: | 2331-8422 |