Loading…

Transmission of magnetic island modes across interplanetary shocks: comparison of theory and observations

Interplanetary shock waves are observed frequently in turbulent solar wind. They naturally enhance the temperature/entropy of the plasma through which they propagate. Moreover, many studies have shown that they also act as an amplifier of the fluctuations incident on the shock front. Solar wind turb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-07, Vol.2544 (1), p.12009
Main Authors: Pitna, A, Zank, G P, Nakanotani, M, Zhao, L-L, Adhikari, L, Safrankova, J, Nemecek, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interplanetary shock waves are observed frequently in turbulent solar wind. They naturally enhance the temperature/entropy of the plasma through which they propagate. Moreover, many studies have shown that they also act as an amplifier of the fluctuations incident on the shock front. Solar wind turbulent fluctuations can be well described as the superposition of quasi-2D and slab components, the former being energetically dominant. In this paper, we address the interaction of fast forward shocks observed by the Wind spacecraft at 1 AU and quasi-2D turbulent fluctuations in the framework of the Zank et al. (2021) transmission model and we compare model predictions with observations. Our statistical study includes 378 shocks with varying upstream conditions and Mach numbers. We estimate the average ratio of the downstream observed and theoretically predicted power spectra within the inertial range of turbulence. We find that the distributions of this ratio for the whole set and for the subset of shocks that met the assumptions of the model, are remarkably close. We argue that a large statistical spread of the distributions of this ratio is governed by the inherent variation of the upstream conditions. Our findings suggest that the model predicts the downstream fluctuations with a good accuracy and that it may be adopted for a wider class of shocks than it was originally meant for.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2544/1/012009