Loading…
Surrogate model solver for impurity-induced superconducting subgap states
A simple impurity solver is shown to capture the impurity-induced superconducting subgap states in quantitative agreement with the numerical renormalization group and quantum Monte-Carlo simulations. The solver is based on the exact diagonalization of a single-impurity Anderson model with discretize...
Saved in:
Published in: | arXiv.org 2023-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple impurity solver is shown to capture the impurity-induced superconducting subgap states in quantitative agreement with the numerical renormalization group and quantum Monte-Carlo simulations. The solver is based on the exact diagonalization of a single-impurity Anderson model with discretized superconducting reservoirs including only a small number of effective levels. Their energies and couplings to the impurity \(d\)-level are chosen so as to best reproduce the Matsubara frequency dependence of the hybridization function. We provide a number of critical benchmarks and demonstrate the solvers efficiency in combination with the reduced basis method [Phys. Rev. B 107, 144503 (2023)] by calculating the phase diagram for an interacting three-terminal junction. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2307.11646 |