Loading…

Influence of floor air supply methods and geometric parameters on thermal performance of data centers

This paper compares four commonly used air supply methods, namely hot and cold aisle open air supply systems, hot aisle sealed air supply systems, under-rack cold aisle air supply systems and cold aisle sealed air supply systems. For each air supply method, the effects of geometric factors, includin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2023-08, Vol.148 (16), p.8477-8496
Main Authors: Feng, Yanzhen, Liu, Peng, Zhang, Zhongbin, Zhang, Wenting, Li, Linda, Wang, Xiaolin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33
cites cdi_FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33
container_end_page 8496
container_issue 16
container_start_page 8477
container_title Journal of thermal analysis and calorimetry
container_volume 148
creator Feng, Yanzhen
Liu, Peng
Zhang, Zhongbin
Zhang, Wenting
Li, Linda
Wang, Xiaolin
description This paper compares four commonly used air supply methods, namely hot and cold aisle open air supply systems, hot aisle sealed air supply systems, under-rack cold aisle air supply systems and cold aisle sealed air supply systems. For each air supply method, the effects of geometric factors, including static pressure box height (0.4–0.6 m in steps of 0.1 m), perforation rate (10%-40% in steps of 10%), baffle position shape (\/-shaped and /\- shaped) and baffle angle (30°/45°/60°), on the thermal environment of the data center are numerically calculated (288 cases in total). Thereafter, the numerical calculation results of the optimal structure were verified through comparison with the results of measurement of the average rack temperature, the average hot spot temperature, the thermal performance evaluation index and the return temperature index on site. The results show that by increasing the height of the static pressure box or reducing the perforation rate within range of 10–30%, the thermal performance of the static pressure box can be improved. Taking into account the room temperature profile and the evaluation indicators ( β , RTI), the best overall performance is achieved in the case of cold aisle containment. Finally, \/-shaped and /\-shaped baffles are compared in the model with cold aisle contained, and the results show that the perforation rate is 20% for both \/-shaped and /\-shaped baffles, and the optimum static pressure heights are 0.5 m and 0.6 m for \/-shaped and /\-shaped baffles, respectively. Overall, \/-shaped baffles have better temperature uniformity than /\-shaped baffles. It is found that the best performance for the CACS model is the configuration with \/-shaped baffle at the angle of 60°, the plenum height of 0.5 m and a perforation rate of 20%.
doi_str_mv 10.1007/s10973-023-12188-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2841449457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758382718</galeid><sourcerecordid>A758382718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33</originalsourceid><addsrcrecordid>eNp9kUFrHCEYhoeSQjZp_0BOQk89TKqfzqrHEJpkIRBI27NY_dxMmNWpzkCzv75uZqHkEjz4Ks_zKbxNc8HoJaNUfiuMaslbCrxlwJRq9x-aFetqAA3rk5p5zWvW0dPmrJRnSqnWlK0a3MQwzBgdkhRIGFLKxPaZlHkchxeyw-kp-UJs9GSLqR5z78hos60RcyEpkukJ884OZMQcUk3HWd5OljiMB-xT8zHYoeDn437e_Lr5_vP6rr1_uN1cX923jmuYWpBa6LWHznsU4LxjjjsJQq4FoALBrVOd_A0gnPIAQXPmg7ZMSy-Be87Pmy_L3DGnPzOWyTynOcf6pAElmBBadLJSlwu1tQOaPoY0Zevq8rjrXYoY-np_JTvFFUimqvD1jVCZCf9OWzuXYjY_Ht-ysLAup1IyBjPmfmfzi2HUHLoyS1emdmVeuzL7KvFFKhWOW8z___2O9Q-IE5cf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449457</pqid></control><display><type>article</type><title>Influence of floor air supply methods and geometric parameters on thermal performance of data centers</title><source>Springer Nature</source><creator>Feng, Yanzhen ; Liu, Peng ; Zhang, Zhongbin ; Zhang, Wenting ; Li, Linda ; Wang, Xiaolin</creator><creatorcontrib>Feng, Yanzhen ; Liu, Peng ; Zhang, Zhongbin ; Zhang, Wenting ; Li, Linda ; Wang, Xiaolin</creatorcontrib><description>This paper compares four commonly used air supply methods, namely hot and cold aisle open air supply systems, hot aisle sealed air supply systems, under-rack cold aisle air supply systems and cold aisle sealed air supply systems. For each air supply method, the effects of geometric factors, including static pressure box height (0.4–0.6 m in steps of 0.1 m), perforation rate (10%-40% in steps of 10%), baffle position shape (\/-shaped and /\- shaped) and baffle angle (30°/45°/60°), on the thermal environment of the data center are numerically calculated (288 cases in total). Thereafter, the numerical calculation results of the optimal structure were verified through comparison with the results of measurement of the average rack temperature, the average hot spot temperature, the thermal performance evaluation index and the return temperature index on site. The results show that by increasing the height of the static pressure box or reducing the perforation rate within range of 10–30%, the thermal performance of the static pressure box can be improved. Taking into account the room temperature profile and the evaluation indicators ( β , RTI), the best overall performance is achieved in the case of cold aisle containment. Finally, \/-shaped and /\-shaped baffles are compared in the model with cold aisle contained, and the results show that the perforation rate is 20% for both \/-shaped and /\-shaped baffles, and the optimum static pressure heights are 0.5 m and 0.6 m for \/-shaped and /\-shaped baffles, respectively. Overall, \/-shaped baffles have better temperature uniformity than /\-shaped baffles. It is found that the best performance for the CACS model is the configuration with \/-shaped baffle at the angle of 60°, the plenum height of 0.5 m and a perforation rate of 20%.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12188-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air supplies ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Cold ; Data centers ; Inorganic Chemistry ; Mathematical models ; Measurement Science and Instrumentation ; Optimization ; Performance evaluation ; Physical Chemistry ; Polymer Sciences ; Room temperature ; Static pressure ; Temperature profiles ; Thermal environments</subject><ispartof>Journal of thermal analysis and calorimetry, 2023-08, Vol.148 (16), p.8477-8496</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33</citedby><cites>FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33</cites><orcidid>0000-0001-6372-4098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Feng, Yanzhen</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhang, Zhongbin</creatorcontrib><creatorcontrib>Zhang, Wenting</creatorcontrib><creatorcontrib>Li, Linda</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><title>Influence of floor air supply methods and geometric parameters on thermal performance of data centers</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This paper compares four commonly used air supply methods, namely hot and cold aisle open air supply systems, hot aisle sealed air supply systems, under-rack cold aisle air supply systems and cold aisle sealed air supply systems. For each air supply method, the effects of geometric factors, including static pressure box height (0.4–0.6 m in steps of 0.1 m), perforation rate (10%-40% in steps of 10%), baffle position shape (\/-shaped and /\- shaped) and baffle angle (30°/45°/60°), on the thermal environment of the data center are numerically calculated (288 cases in total). Thereafter, the numerical calculation results of the optimal structure were verified through comparison with the results of measurement of the average rack temperature, the average hot spot temperature, the thermal performance evaluation index and the return temperature index on site. The results show that by increasing the height of the static pressure box or reducing the perforation rate within range of 10–30%, the thermal performance of the static pressure box can be improved. Taking into account the room temperature profile and the evaluation indicators ( β , RTI), the best overall performance is achieved in the case of cold aisle containment. Finally, \/-shaped and /\-shaped baffles are compared in the model with cold aisle contained, and the results show that the perforation rate is 20% for both \/-shaped and /\-shaped baffles, and the optimum static pressure heights are 0.5 m and 0.6 m for \/-shaped and /\-shaped baffles, respectively. Overall, \/-shaped baffles have better temperature uniformity than /\-shaped baffles. It is found that the best performance for the CACS model is the configuration with \/-shaped baffle at the angle of 60°, the plenum height of 0.5 m and a perforation rate of 20%.</description><subject>Air supplies</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Data centers</subject><subject>Inorganic Chemistry</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Room temperature</subject><subject>Static pressure</subject><subject>Temperature profiles</subject><subject>Thermal environments</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEYhoeSQjZp_0BOQk89TKqfzqrHEJpkIRBI27NY_dxMmNWpzkCzv75uZqHkEjz4Ks_zKbxNc8HoJaNUfiuMaslbCrxlwJRq9x-aFetqAA3rk5p5zWvW0dPmrJRnSqnWlK0a3MQwzBgdkhRIGFLKxPaZlHkchxeyw-kp-UJs9GSLqR5z78hos60RcyEpkukJ884OZMQcUk3HWd5OljiMB-xT8zHYoeDn437e_Lr5_vP6rr1_uN1cX923jmuYWpBa6LWHznsU4LxjjjsJQq4FoALBrVOd_A0gnPIAQXPmg7ZMSy-Be87Pmy_L3DGnPzOWyTynOcf6pAElmBBadLJSlwu1tQOaPoY0Zevq8rjrXYoY-np_JTvFFUimqvD1jVCZCf9OWzuXYjY_Ht-ysLAup1IyBjPmfmfzi2HUHLoyS1emdmVeuzL7KvFFKhWOW8z___2O9Q-IE5cf</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Feng, Yanzhen</creator><creator>Liu, Peng</creator><creator>Zhang, Zhongbin</creator><creator>Zhang, Wenting</creator><creator>Li, Linda</creator><creator>Wang, Xiaolin</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0001-6372-4098</orcidid></search><sort><creationdate>20230801</creationdate><title>Influence of floor air supply methods and geometric parameters on thermal performance of data centers</title><author>Feng, Yanzhen ; Liu, Peng ; Zhang, Zhongbin ; Zhang, Wenting ; Li, Linda ; Wang, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air supplies</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Data centers</topic><topic>Inorganic Chemistry</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Room temperature</topic><topic>Static pressure</topic><topic>Temperature profiles</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yanzhen</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Zhang, Zhongbin</creatorcontrib><creatorcontrib>Zhang, Wenting</creatorcontrib><creatorcontrib>Li, Linda</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yanzhen</au><au>Liu, Peng</au><au>Zhang, Zhongbin</au><au>Zhang, Wenting</au><au>Li, Linda</au><au>Wang, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of floor air supply methods and geometric parameters on thermal performance of data centers</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>148</volume><issue>16</issue><spage>8477</spage><epage>8496</epage><pages>8477-8496</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This paper compares four commonly used air supply methods, namely hot and cold aisle open air supply systems, hot aisle sealed air supply systems, under-rack cold aisle air supply systems and cold aisle sealed air supply systems. For each air supply method, the effects of geometric factors, including static pressure box height (0.4–0.6 m in steps of 0.1 m), perforation rate (10%-40% in steps of 10%), baffle position shape (\/-shaped and /\- shaped) and baffle angle (30°/45°/60°), on the thermal environment of the data center are numerically calculated (288 cases in total). Thereafter, the numerical calculation results of the optimal structure were verified through comparison with the results of measurement of the average rack temperature, the average hot spot temperature, the thermal performance evaluation index and the return temperature index on site. The results show that by increasing the height of the static pressure box or reducing the perforation rate within range of 10–30%, the thermal performance of the static pressure box can be improved. Taking into account the room temperature profile and the evaluation indicators ( β , RTI), the best overall performance is achieved in the case of cold aisle containment. Finally, \/-shaped and /\-shaped baffles are compared in the model with cold aisle contained, and the results show that the perforation rate is 20% for both \/-shaped and /\-shaped baffles, and the optimum static pressure heights are 0.5 m and 0.6 m for \/-shaped and /\-shaped baffles, respectively. Overall, \/-shaped baffles have better temperature uniformity than /\-shaped baffles. It is found that the best performance for the CACS model is the configuration with \/-shaped baffle at the angle of 60°, the plenum height of 0.5 m and a perforation rate of 20%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12188-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6372-4098</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2023-08, Vol.148 (16), p.8477-8496
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2841449457
source Springer Nature
subjects Air supplies
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Cold
Data centers
Inorganic Chemistry
Mathematical models
Measurement Science and Instrumentation
Optimization
Performance evaluation
Physical Chemistry
Polymer Sciences
Room temperature
Static pressure
Temperature profiles
Thermal environments
title Influence of floor air supply methods and geometric parameters on thermal performance of data centers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20floor%20air%20supply%20methods%20and%20geometric%20parameters%20on%20thermal%20performance%20of%20data%20centers&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Feng,%20Yanzhen&rft.date=2023-08-01&rft.volume=148&rft.issue=16&rft.spage=8477&rft.epage=8496&rft.pages=8477-8496&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12188-z&rft_dat=%3Cgale_proqu%3EA758382718%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-279496d25dde42cdc1c3c7247642e8243ac857b224c8d22f931df9a197d723d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841449457&rft_id=info:pmid/&rft_galeid=A758382718&rfr_iscdi=true