Loading…

Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits

It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of...

Full description

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2023-07, Vol.64 (4), p.807-818
Main Authors: Baranov, D. A., Kosolapov, E. S., Pochinka, O. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3
container_end_page 818
container_issue 4
container_start_page 807
container_title Siberian mathematical journal
container_volume 64
creator Baranov, D. A.
Kosolapov, E. S.
Pochinka, O. V.
description It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.
doi_str_mv 10.1134/S0037446623040031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8p1lK_SsWFFo3bsJkesdMaTJxZqr4Nj6LT2ZCBRfi6l7u-c65cBA6peScUi4uFoTwXAilGCei3-keGlGZ86xgiuyj0SBng36IjmJcE0IJUcUIPd-3PmEdsf76nPqm20ACPGvfdHC6TdhbnGrAV85a8I0PXe1iM1wX22C1gYjfXarxsg4A-BGC8ytn8EOoXIrH6MDqTYSTnzlGTzfXy-ldNn-4nU0v55lhapIywbmoWG60YRQ4k1xxRqwsCiKBSU0nVBoBYPMVs1xW-YrkuTGiMIIBUaTiY3S2y-2Cf91CTOXab0PbvyzZRFAhCqFkT9EdZYKPMYAtu-AaHT5KSsqhwvJPhb2H7TyxZ9sXCL_J_5u-AaFOcic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449465</pqid></control><display><type>article</type><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><source>Springer Link</source><creator>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</creator><creatorcontrib>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</creatorcontrib><description>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623040031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Invariants ; Isomorphism ; Knots ; Mathematics ; Mathematics and Statistics ; Orbits ; Topology ; Toruses</subject><ispartof>Siberian mathematical journal, 2023-07, Vol.64 (4), p.807-818</ispartof><rights>Pleiades Publishing, Ltd. 2023. corrected publication 2023, Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 4, pp. 687–699.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</cites><orcidid>0000-0002-6587-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baranov, D. A.</creatorcontrib><creatorcontrib>Kosolapov, E. S.</creatorcontrib><creatorcontrib>Pochinka, O. V.</creatorcontrib><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</description><subject>Invariants</subject><subject>Isomorphism</subject><subject>Knots</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Topology</subject><subject>Toruses</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8p1lK_SsWFFo3bsJkesdMaTJxZqr4Nj6LT2ZCBRfi6l7u-c65cBA6peScUi4uFoTwXAilGCei3-keGlGZ86xgiuyj0SBng36IjmJcE0IJUcUIPd-3PmEdsf76nPqm20ACPGvfdHC6TdhbnGrAV85a8I0PXe1iM1wX22C1gYjfXarxsg4A-BGC8ytn8EOoXIrH6MDqTYSTnzlGTzfXy-ldNn-4nU0v55lhapIywbmoWG60YRQ4k1xxRqwsCiKBSU0nVBoBYPMVs1xW-YrkuTGiMIIBUaTiY3S2y-2Cf91CTOXab0PbvyzZRFAhCqFkT9EdZYKPMYAtu-AaHT5KSsqhwvJPhb2H7TyxZ9sXCL_J_5u-AaFOcic</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Baranov, D. A.</creator><creator>Kosolapov, E. S.</creator><creator>Pochinka, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></search><sort><creationdate>20230701</creationdate><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><author>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Invariants</topic><topic>Isomorphism</topic><topic>Knots</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Topology</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, D. A.</creatorcontrib><creatorcontrib>Kosolapov, E. S.</creatorcontrib><creatorcontrib>Pochinka, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, D. A.</au><au>Kosolapov, E. S.</au><au>Pochinka, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><spage>807</spage><epage>818</epage><pages>807-818</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623040031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2023-07, Vol.64 (4), p.807-818
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2841449465
source Springer Link
subjects Invariants
Isomorphism
Knots
Mathematics
Mathematics and Statistics
Orbits
Topology
Toruses
title Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knot%20as%20a%C2%A0Complete%20Invariant%20of%20the%20Diffeomorphism%20of%20Surfaces%20with%20Three%20Periodic%20Orbits&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Baranov,%20D.%20A.&rft.date=2023-07-01&rft.volume=64&rft.issue=4&rft.spage=807&rft.epage=818&rft.pages=807-818&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623040031&rft_dat=%3Cproquest_cross%3E2841449465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841449465&rft_id=info:pmid/&rfr_iscdi=true