Loading…
Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits
It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of...
Saved in:
Published in: | Siberian mathematical journal 2023-07, Vol.64 (4), p.807-818 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3 |
container_end_page | 818 |
container_issue | 4 |
container_start_page | 807 |
container_title | Siberian mathematical journal |
container_volume | 64 |
creator | Baranov, D. A. Kosolapov, E. S. Pochinka, O. V. |
description | It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot. |
doi_str_mv | 10.1134/S0037446623040031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8p1lK_SsWFFo3bsJkesdMaTJxZqr4Nj6LT2ZCBRfi6l7u-c65cBA6peScUi4uFoTwXAilGCei3-keGlGZ86xgiuyj0SBng36IjmJcE0IJUcUIPd-3PmEdsf76nPqm20ACPGvfdHC6TdhbnGrAV85a8I0PXe1iM1wX22C1gYjfXarxsg4A-BGC8ytn8EOoXIrH6MDqTYSTnzlGTzfXy-ldNn-4nU0v55lhapIywbmoWG60YRQ4k1xxRqwsCiKBSU0nVBoBYPMVs1xW-YrkuTGiMIIBUaTiY3S2y-2Cf91CTOXab0PbvyzZRFAhCqFkT9EdZYKPMYAtu-AaHT5KSsqhwvJPhb2H7TyxZ9sXCL_J_5u-AaFOcic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449465</pqid></control><display><type>article</type><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><source>Springer Link</source><creator>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</creator><creatorcontrib>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</creatorcontrib><description>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623040031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Invariants ; Isomorphism ; Knots ; Mathematics ; Mathematics and Statistics ; Orbits ; Topology ; Toruses</subject><ispartof>Siberian mathematical journal, 2023-07, Vol.64 (4), p.807-818</ispartof><rights>Pleiades Publishing, Ltd. 2023. corrected publication 2023, Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 4, pp. 687–699.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</cites><orcidid>0000-0002-6587-5305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baranov, D. A.</creatorcontrib><creatorcontrib>Kosolapov, E. S.</creatorcontrib><creatorcontrib>Pochinka, O. V.</creatorcontrib><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</description><subject>Invariants</subject><subject>Isomorphism</subject><subject>Knots</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Topology</subject><subject>Toruses</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8p1lK_SsWFFo3bsJkesdMaTJxZqr4Nj6LT2ZCBRfi6l7u-c65cBA6peScUi4uFoTwXAilGCei3-keGlGZ86xgiuyj0SBng36IjmJcE0IJUcUIPd-3PmEdsf76nPqm20ACPGvfdHC6TdhbnGrAV85a8I0PXe1iM1wX22C1gYjfXarxsg4A-BGC8ytn8EOoXIrH6MDqTYSTnzlGTzfXy-ldNn-4nU0v55lhapIywbmoWG60YRQ4k1xxRqwsCiKBSU0nVBoBYPMVs1xW-YrkuTGiMIIBUaTiY3S2y-2Cf91CTOXab0PbvyzZRFAhCqFkT9EdZYKPMYAtu-AaHT5KSsqhwvJPhb2H7TyxZ9sXCL_J_5u-AaFOcic</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Baranov, D. A.</creator><creator>Kosolapov, E. S.</creator><creator>Pochinka, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></search><sort><creationdate>20230701</creationdate><title>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</title><author>Baranov, D. A. ; Kosolapov, E. S. ; Pochinka, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Invariants</topic><topic>Isomorphism</topic><topic>Knots</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Topology</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, D. A.</creatorcontrib><creatorcontrib>Kosolapov, E. S.</creatorcontrib><creatorcontrib>Pochinka, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, D. A.</au><au>Kosolapov, E. S.</au><au>Pochinka, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><spage>807</spage><epage>818</epage><pages>807-818</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist only on the sphere and they are all topologically conjugate to each other. However, if we allow three orbits to exist then the range of manifolds admitting them widens considerably. In particular, the surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to the homotopy type of the knot.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623040031</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6587-5305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2023-07, Vol.64 (4), p.807-818 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2841449465 |
source | Springer Link |
subjects | Invariants Isomorphism Knots Mathematics Mathematics and Statistics Orbits Topology Toruses |
title | Knot as a Complete Invariant of the Diffeomorphism of Surfaces with Three Periodic Orbits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knot%20as%20a%C2%A0Complete%20Invariant%20of%20the%20Diffeomorphism%20of%20Surfaces%20with%20Three%20Periodic%20Orbits&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Baranov,%20D.%20A.&rft.date=2023-07-01&rft.volume=64&rft.issue=4&rft.spage=807&rft.epage=818&rft.pages=807-818&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623040031&rft_dat=%3Cproquest_cross%3E2841449465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-4334b27cac21e32536320f59905e25a1815c4eef7d2f35b7d077cc49c42e060b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841449465&rft_id=info:pmid/&rfr_iscdi=true |