Loading…

Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays

Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simul...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-08
Main Authors: Deka, Pranab J, Kissmann, Ralf, Einkemmer, Lukas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Deka, Pranab J
Kissmann, Ralf
Einkemmer, Lukas
description Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.
doi_str_mv 10.48550/arxiv.2307.12276
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2841686353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841686353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73</originalsourceid><addsrcrecordid>eNotjctKw0AUQAdBsNR-QHcDrhNn7jySLEusVagIpftyOw-ckmTqTCL69wZ0deAsziFkzVkpa6XYI6bv8FWCYFXJASp9QxYgBC9qCXBHVjlfGGOgK1BKLMjb1vtgghtGOky9S8FgR3s3fkSbqY-JboaQ45jiNRj6FLyfcogDjZ7usEMzzraNuZ9xwJ98T249dtmt_rkkx-ftsX0p9u-713azL7BRukCrnVXCILPopJNoDTYGGNMVBybxfBZOc19D4yUiV9Y2niMapmWDiJVYkoe_7DXFz8nl8XSJUxrm4wlqyXWthRLiF3PHUMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841686353</pqid></control><display><type>article</type><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><source>Publicly Available Content Database</source><creator>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</creator><creatorcontrib>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</creatorcontrib><description>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2307.12276</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion ; Galactic cosmic rays ; Heliosphere ; Integrators ; Interstellar magnetic fields ; Numerical methods ; Time dependence ; Transport equations</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2841686353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Deka, Pranab J</creatorcontrib><creatorcontrib>Kissmann, Ralf</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><title>arXiv.org</title><description>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</description><subject>Diffusion</subject><subject>Galactic cosmic rays</subject><subject>Heliosphere</subject><subject>Integrators</subject><subject>Interstellar magnetic fields</subject><subject>Numerical methods</subject><subject>Time dependence</subject><subject>Transport equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AUQAdBsNR-QHcDrhNn7jySLEusVagIpftyOw-ckmTqTCL69wZ0deAsziFkzVkpa6XYI6bv8FWCYFXJASp9QxYgBC9qCXBHVjlfGGOgK1BKLMjb1vtgghtGOky9S8FgR3s3fkSbqY-JboaQ45jiNRj6FLyfcogDjZ7usEMzzraNuZ9xwJ98T249dtmt_rkkx-ftsX0p9u-713azL7BRukCrnVXCILPopJNoDTYGGNMVBybxfBZOc19D4yUiV9Y2niMapmWDiJVYkoe_7DXFz8nl8XSJUxrm4wlqyXWthRLiF3PHUMw</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Deka, Pranab J</creator><creator>Kissmann, Ralf</creator><creator>Einkemmer, Lukas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230808</creationdate><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><author>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diffusion</topic><topic>Galactic cosmic rays</topic><topic>Heliosphere</topic><topic>Integrators</topic><topic>Interstellar magnetic fields</topic><topic>Numerical methods</topic><topic>Time dependence</topic><topic>Transport equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Deka, Pranab J</creatorcontrib><creatorcontrib>Kissmann, Ralf</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deka, Pranab J</au><au>Kissmann, Ralf</au><au>Einkemmer, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</atitle><jtitle>arXiv.org</jtitle><date>2023-08-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2307.12276</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2841686353
source Publicly Available Content Database
subjects Diffusion
Galactic cosmic rays
Heliosphere
Integrators
Interstellar magnetic fields
Numerical methods
Time dependence
Transport equations
title Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20methods%20for%20Anisotropic%20Diffusion%20of%20Galactic%20Cosmic%20Rays&rft.jtitle=arXiv.org&rft.au=Deka,%20Pranab%20J&rft.date=2023-08-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2307.12276&rft_dat=%3Cproquest%3E2841686353%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841686353&rft_id=info:pmid/&rfr_iscdi=true