Loading…
Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays
Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simul...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Deka, Pranab J Kissmann, Ralf Einkemmer, Lukas |
description | Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration. |
doi_str_mv | 10.48550/arxiv.2307.12276 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2841686353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841686353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73</originalsourceid><addsrcrecordid>eNotjctKw0AUQAdBsNR-QHcDrhNn7jySLEusVagIpftyOw-ckmTqTCL69wZ0deAsziFkzVkpa6XYI6bv8FWCYFXJASp9QxYgBC9qCXBHVjlfGGOgK1BKLMjb1vtgghtGOky9S8FgR3s3fkSbqY-JboaQ45jiNRj6FLyfcogDjZ7usEMzzraNuZ9xwJ98T249dtmt_rkkx-ftsX0p9u-713azL7BRukCrnVXCILPopJNoDTYGGNMVBybxfBZOc19D4yUiV9Y2niMapmWDiJVYkoe_7DXFz8nl8XSJUxrm4wlqyXWthRLiF3PHUMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841686353</pqid></control><display><type>article</type><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><source>Publicly Available Content Database</source><creator>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</creator><creatorcontrib>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</creatorcontrib><description>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2307.12276</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion ; Galactic cosmic rays ; Heliosphere ; Integrators ; Interstellar magnetic fields ; Numerical methods ; Time dependence ; Transport equations</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2841686353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Deka, Pranab J</creatorcontrib><creatorcontrib>Kissmann, Ralf</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><title>arXiv.org</title><description>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</description><subject>Diffusion</subject><subject>Galactic cosmic rays</subject><subject>Heliosphere</subject><subject>Integrators</subject><subject>Interstellar magnetic fields</subject><subject>Numerical methods</subject><subject>Time dependence</subject><subject>Transport equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AUQAdBsNR-QHcDrhNn7jySLEusVagIpftyOw-ckmTqTCL69wZ0deAsziFkzVkpa6XYI6bv8FWCYFXJASp9QxYgBC9qCXBHVjlfGGOgK1BKLMjb1vtgghtGOky9S8FgR3s3fkSbqY-JboaQ45jiNRj6FLyfcogDjZ7usEMzzraNuZ9xwJ98T249dtmt_rkkx-ftsX0p9u-713azL7BRukCrnVXCILPopJNoDTYGGNMVBybxfBZOc19D4yUiV9Y2niMapmWDiJVYkoe_7DXFz8nl8XSJUxrm4wlqyXWthRLiF3PHUMw</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Deka, Pranab J</creator><creator>Kissmann, Ralf</creator><creator>Einkemmer, Lukas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230808</creationdate><title>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</title><author>Deka, Pranab J ; Kissmann, Ralf ; Einkemmer, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diffusion</topic><topic>Galactic cosmic rays</topic><topic>Heliosphere</topic><topic>Integrators</topic><topic>Interstellar magnetic fields</topic><topic>Numerical methods</topic><topic>Time dependence</topic><topic>Transport equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Deka, Pranab J</creatorcontrib><creatorcontrib>Kissmann, Ralf</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deka, Pranab J</au><au>Kissmann, Ralf</au><au>Einkemmer, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays</atitle><jtitle>arXiv.org</jtitle><date>2023-08-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere, and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent cosmic ray transport, implicit integrators (namely, Crank-Nicolson (CN)) have been traditionally favoured over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential methods to treat the linear anisotropc diffusion equation in the presence of advection and time-independent and time-dependent sources. These methods allow us to take even larger step sizes that can substantially speed-up the simulations whilst generating highly accurate solutions. In or subsequent work, we will use these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider additional physical processes such as continuous momentum losses and reacceleration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2307.12276</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2841686353 |
source | Publicly Available Content Database |
subjects | Diffusion Galactic cosmic rays Heliosphere Integrators Interstellar magnetic fields Numerical methods Time dependence Transport equations |
title | Efficient numerical methods for Anisotropic Diffusion of Galactic Cosmic Rays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20numerical%20methods%20for%20Anisotropic%20Diffusion%20of%20Galactic%20Cosmic%20Rays&rft.jtitle=arXiv.org&rft.au=Deka,%20Pranab%20J&rft.date=2023-08-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2307.12276&rft_dat=%3Cproquest%3E2841686353%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-ad6ed53ca0dae4e4adca9c200671204abb3e61f829f4aa15dd9f1aac0649aaa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841686353&rft_id=info:pmid/&rfr_iscdi=true |