Loading…

On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT

It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generalit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2023-08, Vol.70 (8), p.1-8
Main Authors: Liu, Kegang, Ding, Haibing, Xue, Qianzhong, Guo, Naining, Song, Wenke, Xie, Bingchuan, Zhao, Ding
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93
container_end_page 8
container_issue 8
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Liu, Kegang
Ding, Haibing
Xue, Qianzhong
Guo, Naining
Song, Wenke
Xie, Bingchuan
Zhao, Ding
description It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).
doi_str_mv 10.1109/TED.2023.3288843
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2842125833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171387</ieee_id><sourcerecordid>2842125833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmc5McpdYqFFpki8eQ5gO3dDc12R7896a2B0_DzDzvDDwA3GM0wRipp2b2MiGI0AklUkpGL8AIcy4qVbP6EowQwrJSVNJrcJPztrQ1Y2QEmmUPhy8PP0zXhtaaoY19hjHAuY-dH1IZ7eC6tz4Npu2H1me43scernwKMXWmbODKJFNYn_6CzWdzC66C2WV_d65jsH6dNdO3arGcv0-fF5UljA-VY5RbxDyljnJEbEDWe2lRLbgzDKsgXeCOSSU2jgonxUYoFKh12CrsjKJj8Hi6u0_x--DzoLfxkPryUhPJCCZcUloodKJsijknH_Q-tZ1JPxojfXSnizt9dKfP7krk4RRpvff_cCwwlYL-ArijarU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842125833</pqid></control><display><type>article</type><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</creator><creatorcontrib>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</creatorcontrib><description>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3288843</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural network (ANN) ; Artificial neural networks ; Bandwidth ; Corrugated waveguides ; Gain ; geometrical uncertainties ; Geometry ; insert phase ; Interaction parameters ; Manufacturing ; manufacturing yield ; Monte Carlo method ; Performance analysis ; Performance indices ; Traveling wave tubes ; Traveling waves ; traveling-wave tube (TWT) ; Uncertainty ; uncertainty analysis</subject><ispartof>IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</cites><orcidid>0000-0002-2865-7819 ; 0000-0003-0846-2640 ; 0000-0003-0351-099X ; 0000-0002-3275-5382 ; 0000-0002-7455-8248 ; 0000-0003-1740-4274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Kegang</creatorcontrib><creatorcontrib>Ding, Haibing</creatorcontrib><creatorcontrib>Xue, Qianzhong</creatorcontrib><creatorcontrib>Guo, Naining</creatorcontrib><creatorcontrib>Song, Wenke</creatorcontrib><creatorcontrib>Xie, Bingchuan</creatorcontrib><creatorcontrib>Zhao, Ding</creatorcontrib><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</description><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Corrugated waveguides</subject><subject>Gain</subject><subject>geometrical uncertainties</subject><subject>Geometry</subject><subject>insert phase</subject><subject>Interaction parameters</subject><subject>Manufacturing</subject><subject>manufacturing yield</subject><subject>Monte Carlo method</subject><subject>Performance analysis</subject><subject>Performance indices</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>traveling-wave tube (TWT)</subject><subject>Uncertainty</subject><subject>uncertainty analysis</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmc5McpdYqFFpki8eQ5gO3dDc12R7896a2B0_DzDzvDDwA3GM0wRipp2b2MiGI0AklUkpGL8AIcy4qVbP6EowQwrJSVNJrcJPztrQ1Y2QEmmUPhy8PP0zXhtaaoY19hjHAuY-dH1IZ7eC6tz4Npu2H1me43scernwKMXWmbODKJFNYn_6CzWdzC66C2WV_d65jsH6dNdO3arGcv0-fF5UljA-VY5RbxDyljnJEbEDWe2lRLbgzDKsgXeCOSSU2jgonxUYoFKh12CrsjKJj8Hi6u0_x--DzoLfxkPryUhPJCCZcUloodKJsijknH_Q-tZ1JPxojfXSnizt9dKfP7krk4RRpvff_cCwwlYL-ArijarU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Kegang</creator><creator>Ding, Haibing</creator><creator>Xue, Qianzhong</creator><creator>Guo, Naining</creator><creator>Song, Wenke</creator><creator>Xie, Bingchuan</creator><creator>Zhao, Ding</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2865-7819</orcidid><orcidid>https://orcid.org/0000-0003-0846-2640</orcidid><orcidid>https://orcid.org/0000-0003-0351-099X</orcidid><orcidid>https://orcid.org/0000-0002-3275-5382</orcidid><orcidid>https://orcid.org/0000-0002-7455-8248</orcidid><orcidid>https://orcid.org/0000-0003-1740-4274</orcidid></search><sort><creationdate>20230801</creationdate><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><author>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Corrugated waveguides</topic><topic>Gain</topic><topic>geometrical uncertainties</topic><topic>Geometry</topic><topic>insert phase</topic><topic>Interaction parameters</topic><topic>Manufacturing</topic><topic>manufacturing yield</topic><topic>Monte Carlo method</topic><topic>Performance analysis</topic><topic>Performance indices</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>traveling-wave tube (TWT)</topic><topic>Uncertainty</topic><topic>uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kegang</creatorcontrib><creatorcontrib>Ding, Haibing</creatorcontrib><creatorcontrib>Xue, Qianzhong</creatorcontrib><creatorcontrib>Guo, Naining</creatorcontrib><creatorcontrib>Song, Wenke</creatorcontrib><creatorcontrib>Xie, Bingchuan</creatorcontrib><creatorcontrib>Zhao, Ding</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kegang</au><au>Ding, Haibing</au><au>Xue, Qianzhong</au><au>Guo, Naining</au><au>Song, Wenke</au><au>Xie, Bingchuan</au><au>Zhao, Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>70</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3288843</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2865-7819</orcidid><orcidid>https://orcid.org/0000-0003-0846-2640</orcidid><orcidid>https://orcid.org/0000-0003-0351-099X</orcidid><orcidid>https://orcid.org/0000-0002-3275-5382</orcidid><orcidid>https://orcid.org/0000-0002-7455-8248</orcidid><orcidid>https://orcid.org/0000-0003-1740-4274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-8
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2842125833
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural network (ANN)
Artificial neural networks
Bandwidth
Corrugated waveguides
Gain
geometrical uncertainties
Geometry
insert phase
Interaction parameters
Manufacturing
manufacturing yield
Monte Carlo method
Performance analysis
Performance indices
Traveling wave tubes
Traveling waves
traveling-wave tube (TWT)
Uncertainty
uncertainty analysis
title On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Ramifications%20of%20Geometrical%20Uncertainties%20Upon%20Performance%20Parameters%20of%20TWT&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Liu,%20Kegang&rft.date=2023-08-01&rft.volume=70&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3288843&rft_dat=%3Cproquest_ieee_%3E2842125833%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842125833&rft_id=info:pmid/&rft_ieee_id=10171387&rfr_iscdi=true