Loading…
On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT
It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generalit...
Saved in:
Published in: | IEEE transactions on electron devices 2023-08, Vol.70 (8), p.1-8 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93 |
container_end_page | 8 |
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Liu, Kegang Ding, Haibing Xue, Qianzhong Guo, Naining Song, Wenke Xie, Bingchuan Zhao, Ding |
description | It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC). |
doi_str_mv | 10.1109/TED.2023.3288843 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2842125833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171387</ieee_id><sourcerecordid>2842125833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmc5McpdYqFFpki8eQ5gO3dDc12R7896a2B0_DzDzvDDwA3GM0wRipp2b2MiGI0AklUkpGL8AIcy4qVbP6EowQwrJSVNJrcJPztrQ1Y2QEmmUPhy8PP0zXhtaaoY19hjHAuY-dH1IZ7eC6tz4Npu2H1me43scernwKMXWmbODKJFNYn_6CzWdzC66C2WV_d65jsH6dNdO3arGcv0-fF5UljA-VY5RbxDyljnJEbEDWe2lRLbgzDKsgXeCOSSU2jgonxUYoFKh12CrsjKJj8Hi6u0_x--DzoLfxkPryUhPJCCZcUloodKJsijknH_Q-tZ1JPxojfXSnizt9dKfP7krk4RRpvff_cCwwlYL-ArijarU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842125833</pqid></control><display><type>article</type><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</creator><creatorcontrib>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</creatorcontrib><description>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3288843</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural network (ANN) ; Artificial neural networks ; Bandwidth ; Corrugated waveguides ; Gain ; geometrical uncertainties ; Geometry ; insert phase ; Interaction parameters ; Manufacturing ; manufacturing yield ; Monte Carlo method ; Performance analysis ; Performance indices ; Traveling wave tubes ; Traveling waves ; traveling-wave tube (TWT) ; Uncertainty ; uncertainty analysis</subject><ispartof>IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</cites><orcidid>0000-0002-2865-7819 ; 0000-0003-0846-2640 ; 0000-0003-0351-099X ; 0000-0002-3275-5382 ; 0000-0002-7455-8248 ; 0000-0003-1740-4274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Kegang</creatorcontrib><creatorcontrib>Ding, Haibing</creatorcontrib><creatorcontrib>Xue, Qianzhong</creatorcontrib><creatorcontrib>Guo, Naining</creatorcontrib><creatorcontrib>Song, Wenke</creatorcontrib><creatorcontrib>Xie, Bingchuan</creatorcontrib><creatorcontrib>Zhao, Ding</creatorcontrib><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</description><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Corrugated waveguides</subject><subject>Gain</subject><subject>geometrical uncertainties</subject><subject>Geometry</subject><subject>insert phase</subject><subject>Interaction parameters</subject><subject>Manufacturing</subject><subject>manufacturing yield</subject><subject>Monte Carlo method</subject><subject>Performance analysis</subject><subject>Performance indices</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>traveling-wave tube (TWT)</subject><subject>Uncertainty</subject><subject>uncertainty analysis</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrfmc5McpdYqFFpki8eQ5gO3dDc12R7896a2B0_DzDzvDDwA3GM0wRipp2b2MiGI0AklUkpGL8AIcy4qVbP6EowQwrJSVNJrcJPztrQ1Y2QEmmUPhy8PP0zXhtaaoY19hjHAuY-dH1IZ7eC6tz4Npu2H1me43scernwKMXWmbODKJFNYn_6CzWdzC66C2WV_d65jsH6dNdO3arGcv0-fF5UljA-VY5RbxDyljnJEbEDWe2lRLbgzDKsgXeCOSSU2jgonxUYoFKh12CrsjKJj8Hi6u0_x--DzoLfxkPryUhPJCCZcUloodKJsijknH_Q-tZ1JPxojfXSnizt9dKfP7krk4RRpvff_cCwwlYL-ArijarU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Kegang</creator><creator>Ding, Haibing</creator><creator>Xue, Qianzhong</creator><creator>Guo, Naining</creator><creator>Song, Wenke</creator><creator>Xie, Bingchuan</creator><creator>Zhao, Ding</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2865-7819</orcidid><orcidid>https://orcid.org/0000-0003-0846-2640</orcidid><orcidid>https://orcid.org/0000-0003-0351-099X</orcidid><orcidid>https://orcid.org/0000-0002-3275-5382</orcidid><orcidid>https://orcid.org/0000-0002-7455-8248</orcidid><orcidid>https://orcid.org/0000-0003-1740-4274</orcidid></search><sort><creationdate>20230801</creationdate><title>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</title><author>Liu, Kegang ; Ding, Haibing ; Xue, Qianzhong ; Guo, Naining ; Song, Wenke ; Xie, Bingchuan ; Zhao, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Corrugated waveguides</topic><topic>Gain</topic><topic>geometrical uncertainties</topic><topic>Geometry</topic><topic>insert phase</topic><topic>Interaction parameters</topic><topic>Manufacturing</topic><topic>manufacturing yield</topic><topic>Monte Carlo method</topic><topic>Performance analysis</topic><topic>Performance indices</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>traveling-wave tube (TWT)</topic><topic>Uncertainty</topic><topic>uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kegang</creatorcontrib><creatorcontrib>Ding, Haibing</creatorcontrib><creatorcontrib>Xue, Qianzhong</creatorcontrib><creatorcontrib>Guo, Naining</creatorcontrib><creatorcontrib>Song, Wenke</creatorcontrib><creatorcontrib>Xie, Bingchuan</creatorcontrib><creatorcontrib>Zhao, Ding</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kegang</au><au>Ding, Haibing</au><au>Xue, Qianzhong</au><au>Guo, Naining</au><au>Song, Wenke</au><au>Xie, Bingchuan</au><au>Zhao, Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>70</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>It's presented here a general pattern for quantitative evaluation of impacts imposed by uncertainties brought directly from geometrical parameters on performance parameters for traveling-wave tube (TWT) design, in a holistic perspective in terms of distribution traits. For the sake of generality and built-up of pathways, artificial neural network (ANN), rather than closed-form solution, is employed for access to the mapping between geometrical parameters with interaction parameters, involving interaction impedance, detune parameter and attenuation constant. Furthermore, with the intermediate interaction parameters derived, the geometrical variations are eventually connected with TWT performance indexes like gain, bandwidth, insertion phase and even manufacturing yield. With such an ease on the association between the two somewhat distant analysis layers in general, a Monte-Carlo analysis is carried out to reveal the ramifications brought from multi-dimensional geometrical uncertainties on performance indexes. An embodiment of the analysis approach is made with double corrugated waveguide (DWC).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3288843</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2865-7819</orcidid><orcidid>https://orcid.org/0000-0003-0846-2640</orcidid><orcidid>https://orcid.org/0000-0003-0351-099X</orcidid><orcidid>https://orcid.org/0000-0002-3275-5382</orcidid><orcidid>https://orcid.org/0000-0002-7455-8248</orcidid><orcidid>https://orcid.org/0000-0003-1740-4274</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-8 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2842125833 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural network (ANN) Artificial neural networks Bandwidth Corrugated waveguides Gain geometrical uncertainties Geometry insert phase Interaction parameters Manufacturing manufacturing yield Monte Carlo method Performance analysis Performance indices Traveling wave tubes Traveling waves traveling-wave tube (TWT) Uncertainty uncertainty analysis |
title | On the Ramifications of Geometrical Uncertainties Upon Performance Parameters of TWT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Ramifications%20of%20Geometrical%20Uncertainties%20Upon%20Performance%20Parameters%20of%20TWT&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Liu,%20Kegang&rft.date=2023-08-01&rft.volume=70&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3288843&rft_dat=%3Cproquest_ieee_%3E2842125833%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-d435c04e33d3502cf0cee8c0675da419f8df5d4897bd37d87b790f3cd1c91da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842125833&rft_id=info:pmid/&rft_ieee_id=10171387&rfr_iscdi=true |