Loading…
Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules
Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorith...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Wang, Ran Liu, Jinming Sun, Heming Katto, Jiro |
description | Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods. |
doi_str_mv | 10.1109/ACCESS.2023.3291591 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2842168216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171466</ieee_id><doaj_id>oai_doaj_org_article_1853da078ddf47d5be59572761ad383d</doaj_id><sourcerecordid>2842168216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTMfTZs8jjJ1UPFh-hyy5q7L6JqZtIr_3nQdskDIzb3nnNzcE0X3GM0xRuJpURTL9XpOEKFzSgRmAl9FE4IzkVBGs-uL-Daaeb9HYfGQYvkkqktQrgUdl9b7BryPVwdVQ1zYw9GFq7Ft_GO63ZDYmAFY7FTbQpNUttWmC3XT1vGb1dD4WLU6XvSddVCfyN8wVPqgexfdbFXjYXY-p9Hn8_KjeE3K95dVsSiTijLRJSrXG40oFpQCcLZBXJBtpggjjJEq_E7noW2akwoE1oqnSKWUU8GIxikHTqfRatTVVu3l0ZmDcr_SKiNPCetqqVxnqgYk5oxqhXKu9TbNNdsAC9okz7DSQVMHrcdR6-jsVw--k3vbuza0LwlPw1B52AFFR1TlwggdbP9fxUgOBsnRIDkYJM8GBdbDyDIAcMHAOU6zjP4B_fiL5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168216</pqid></control><display><type>article</type><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</creator><creatorcontrib>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</creatorcontrib><description>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3291591</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autoregressive model ; Autoregressive models ; Channel-conditioning model ; Computational modeling ; Computer architecture ; Context modeling ; Data models ; Decoding ; Image coding ; Image compression ; Image enhancement ; Learning ; Lossless Image Compression ; Quantization (signal) ; Redundancy</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</cites><orcidid>0009-0009-5303-075X ; 0000-0001-5583-4895 ; 0000-0002-1671-2614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171466$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><creatorcontrib>Katto, Jiro</creatorcontrib><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</description><subject>Algorithms</subject><subject>Autoregressive model</subject><subject>Autoregressive models</subject><subject>Channel-conditioning model</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Context modeling</subject><subject>Data models</subject><subject>Decoding</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Lossless Image Compression</subject><subject>Quantization (signal)</subject><subject>Redundancy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTMfTZs8jjJ1UPFh-hyy5q7L6JqZtIr_3nQdskDIzb3nnNzcE0X3GM0xRuJpURTL9XpOEKFzSgRmAl9FE4IzkVBGs-uL-Daaeb9HYfGQYvkkqktQrgUdl9b7BryPVwdVQ1zYw9GFq7Ft_GO63ZDYmAFY7FTbQpNUttWmC3XT1vGb1dD4WLU6XvSddVCfyN8wVPqgexfdbFXjYXY-p9Hn8_KjeE3K95dVsSiTijLRJSrXG40oFpQCcLZBXJBtpggjjJEq_E7noW2akwoE1oqnSKWUU8GIxikHTqfRatTVVu3l0ZmDcr_SKiNPCetqqVxnqgYk5oxqhXKu9TbNNdsAC9okz7DSQVMHrcdR6-jsVw--k3vbuza0LwlPw1B52AFFR1TlwggdbP9fxUgOBsnRIDkYJM8GBdbDyDIAcMHAOU6zjP4B_fiL5Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Ran</creator><creator>Liu, Jinming</creator><creator>Sun, Heming</creator><creator>Katto, Jiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-5303-075X</orcidid><orcidid>https://orcid.org/0000-0001-5583-4895</orcidid><orcidid>https://orcid.org/0000-0002-1671-2614</orcidid></search><sort><creationdate>20230101</creationdate><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><author>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autoregressive model</topic><topic>Autoregressive models</topic><topic>Channel-conditioning model</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Context modeling</topic><topic>Data models</topic><topic>Decoding</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Lossless Image Compression</topic><topic>Quantization (signal)</topic><topic>Redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><creatorcontrib>Katto, Jiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ran</au><au>Liu, Jinming</au><au>Sun, Heming</au><au>Katto, Jiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3291591</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-5303-075X</orcidid><orcidid>https://orcid.org/0000-0001-5583-4895</orcidid><orcidid>https://orcid.org/0000-0002-1671-2614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2842168216 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Autoregressive model Autoregressive models Channel-conditioning model Computational modeling Computer architecture Context modeling Data models Decoding Image coding Image compression Image enhancement Learning Lossless Image Compression Quantization (signal) Redundancy |
title | Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learned%20Lossless%20Image%20Compression%20with%20Combined%20Channel-conditioning%20Models%20and%20Autoregressive%20Modules&rft.jtitle=IEEE%20access&rft.au=Wang,%20Ran&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3291591&rft_dat=%3Cproquest_doaj_%3E2842168216%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842168216&rft_id=info:pmid/&rft_ieee_id=10171466&rfr_iscdi=true |