Loading…

Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules

Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorith...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Wang, Ran, Liu, Jinming, Sun, Heming, Katto, Jiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Wang, Ran
Liu, Jinming
Sun, Heming
Katto, Jiro
description Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.
doi_str_mv 10.1109/ACCESS.2023.3291591
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2842168216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171466</ieee_id><doaj_id>oai_doaj_org_article_1853da078ddf47d5be59572761ad383d</doaj_id><sourcerecordid>2842168216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTMfTZs8jjJ1UPFh-hyy5q7L6JqZtIr_3nQdskDIzb3nnNzcE0X3GM0xRuJpURTL9XpOEKFzSgRmAl9FE4IzkVBGs-uL-Daaeb9HYfGQYvkkqktQrgUdl9b7BryPVwdVQ1zYw9GFq7Ft_GO63ZDYmAFY7FTbQpNUttWmC3XT1vGb1dD4WLU6XvSddVCfyN8wVPqgexfdbFXjYXY-p9Hn8_KjeE3K95dVsSiTijLRJSrXG40oFpQCcLZBXJBtpggjjJEq_E7noW2akwoE1oqnSKWUU8GIxikHTqfRatTVVu3l0ZmDcr_SKiNPCetqqVxnqgYk5oxqhXKu9TbNNdsAC9okz7DSQVMHrcdR6-jsVw--k3vbuza0LwlPw1B52AFFR1TlwggdbP9fxUgOBsnRIDkYJM8GBdbDyDIAcMHAOU6zjP4B_fiL5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168216</pqid></control><display><type>article</type><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</creator><creatorcontrib>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</creatorcontrib><description>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3291591</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autoregressive model ; Autoregressive models ; Channel-conditioning model ; Computational modeling ; Computer architecture ; Context modeling ; Data models ; Decoding ; Image coding ; Image compression ; Image enhancement ; Learning ; Lossless Image Compression ; Quantization (signal) ; Redundancy</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</cites><orcidid>0009-0009-5303-075X ; 0000-0001-5583-4895 ; 0000-0002-1671-2614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171466$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><creatorcontrib>Katto, Jiro</creatorcontrib><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</description><subject>Algorithms</subject><subject>Autoregressive model</subject><subject>Autoregressive models</subject><subject>Channel-conditioning model</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Context modeling</subject><subject>Data models</subject><subject>Decoding</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Lossless Image Compression</subject><subject>Quantization (signal)</subject><subject>Redundancy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTMfTZs8jjJ1UPFh-hyy5q7L6JqZtIr_3nQdskDIzb3nnNzcE0X3GM0xRuJpURTL9XpOEKFzSgRmAl9FE4IzkVBGs-uL-Daaeb9HYfGQYvkkqktQrgUdl9b7BryPVwdVQ1zYw9GFq7Ft_GO63ZDYmAFY7FTbQpNUttWmC3XT1vGb1dD4WLU6XvSddVCfyN8wVPqgexfdbFXjYXY-p9Hn8_KjeE3K95dVsSiTijLRJSrXG40oFpQCcLZBXJBtpggjjJEq_E7noW2akwoE1oqnSKWUU8GIxikHTqfRatTVVu3l0ZmDcr_SKiNPCetqqVxnqgYk5oxqhXKu9TbNNdsAC9okz7DSQVMHrcdR6-jsVw--k3vbuza0LwlPw1B52AFFR1TlwggdbP9fxUgOBsnRIDkYJM8GBdbDyDIAcMHAOU6zjP4B_fiL5Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Ran</creator><creator>Liu, Jinming</creator><creator>Sun, Heming</creator><creator>Katto, Jiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-5303-075X</orcidid><orcidid>https://orcid.org/0000-0001-5583-4895</orcidid><orcidid>https://orcid.org/0000-0002-1671-2614</orcidid></search><sort><creationdate>20230101</creationdate><title>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</title><author>Wang, Ran ; Liu, Jinming ; Sun, Heming ; Katto, Jiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autoregressive model</topic><topic>Autoregressive models</topic><topic>Channel-conditioning model</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Context modeling</topic><topic>Data models</topic><topic>Decoding</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Lossless Image Compression</topic><topic>Quantization (signal)</topic><topic>Redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Liu, Jinming</creatorcontrib><creatorcontrib>Sun, Heming</creatorcontrib><creatorcontrib>Katto, Jiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ran</au><au>Liu, Jinming</au><au>Sun, Heming</au><au>Katto, Jiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lossless image compression is an important research field in image compression. Recently, learning-based lossless image compression methods achieved impressive performance compared with traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea of combining an autoregressive model for the raw images based on the end-to-end lossless architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) in our network architecture to boost performance. The experimental results show that our approach outperforms most classical lossless compression methods and existing learning-based lossless methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3291591</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-5303-075X</orcidid><orcidid>https://orcid.org/0000-0001-5583-4895</orcidid><orcidid>https://orcid.org/0000-0002-1671-2614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2842168216
source IEEE Xplore Open Access Journals
subjects Algorithms
Autoregressive model
Autoregressive models
Channel-conditioning model
Computational modeling
Computer architecture
Context modeling
Data models
Decoding
Image coding
Image compression
Image enhancement
Learning
Lossless Image Compression
Quantization (signal)
Redundancy
title Learned Lossless Image Compression with Combined Channel-conditioning Models and Autoregressive Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learned%20Lossless%20Image%20Compression%20with%20Combined%20Channel-conditioning%20Models%20and%20Autoregressive%20Modules&rft.jtitle=IEEE%20access&rft.au=Wang,%20Ran&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3291591&rft_dat=%3Cproquest_doaj_%3E2842168216%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a7dbd031933ee85b0892f6a252552c329d7957372ce91da840a4383952d148e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842168216&rft_id=info:pmid/&rft_ieee_id=10171466&rfr_iscdi=true