Loading…

Parameter-Free FISTA by Adaptive Restart and Backtracking

We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear co...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Aujol, Jean-François, Calatroni, Luca, Dossal, Charles, Labarrière, Hippolyte, Rondepierre, Aude
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aujol, Jean-François
Calatroni, Luca
Dossal, Charles
Labarrière, Hippolyte
Rondepierre, Aude
description We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear convergence rate for the function values \(F(x_n)\) of the form \(\mathcal{O}( e^{-K\sqrt{\mu/L}~n})\) under the prior knowledge of problem conditioning, i.e. of the ratio between the (\L ojasiewicz) parameter \(\mu\) determining the growth of the objective function and the Lipschitz constant \(L\) of its smooth component. These parameters are nonetheless hard to estimate in many practical cases. Recent works address the problem by estimating either parameter via suitable adaptive strategies. In our work both parameters can be estimated at the same time by means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation of \(L\) is performed. For this scheme, theoretical convergence results are proved, showing that a \(\mathcal{O}( e^{-K\sqrt{\mu/L}n})\) convergence speed can still be achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several numerical results are reported to confirm the practical interest of its use in many exemplar problems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2842691921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842691921</sourcerecordid><originalsourceid>FETCH-proquest_journals_28426919213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDEgsSsxNLUkt0nUrSk1VcPMMDnFUSKpUcExJLCjJLEtVCEotLkksKlFIzEtRcEpMzi4pAhKZeek8DKxpiTnFqbxQmptB2c01xNlDt6Aov7AUqCk-K7-0KA8oFW8EtNvM0tDSyNCYOFUABMg1gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842691921</pqid></control><display><type>article</type><title>Parameter-Free FISTA by Adaptive Restart and Backtracking</title><source>Publicly Available Content Database</source><creator>Aujol, Jean-François ; Calatroni, Luca ; Dossal, Charles ; Labarrière, Hippolyte ; Rondepierre, Aude</creator><creatorcontrib>Aujol, Jean-François ; Calatroni, Luca ; Dossal, Charles ; Labarrière, Hippolyte ; Rondepierre, Aude</creatorcontrib><description>We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear convergence rate for the function values \(F(x_n)\) of the form \(\mathcal{O}( e^{-K\sqrt{\mu/L}~n})\) under the prior knowledge of problem conditioning, i.e. of the ratio between the (\L ojasiewicz) parameter \(\mu\) determining the growth of the objective function and the Lipschitz constant \(L\) of its smooth component. These parameters are nonetheless hard to estimate in many practical cases. Recent works address the problem by estimating either parameter via suitable adaptive strategies. In our work both parameters can be estimated at the same time by means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation of \(L\) is performed. For this scheme, theoretical convergence results are proved, showing that a \(\mathcal{O}( e^{-K\sqrt{\mu/L}n})\) convergence speed can still be achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several numerical results are reported to confirm the practical interest of its use in many exemplar problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Conditioning ; Convergence ; Convexity ; Estimation ; Iterative methods ; Optimization ; Parameters ; Restarting</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2842691921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Aujol, Jean-François</creatorcontrib><creatorcontrib>Calatroni, Luca</creatorcontrib><creatorcontrib>Dossal, Charles</creatorcontrib><creatorcontrib>Labarrière, Hippolyte</creatorcontrib><creatorcontrib>Rondepierre, Aude</creatorcontrib><title>Parameter-Free FISTA by Adaptive Restart and Backtracking</title><title>arXiv.org</title><description>We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear convergence rate for the function values \(F(x_n)\) of the form \(\mathcal{O}( e^{-K\sqrt{\mu/L}~n})\) under the prior knowledge of problem conditioning, i.e. of the ratio between the (\L ojasiewicz) parameter \(\mu\) determining the growth of the objective function and the Lipschitz constant \(L\) of its smooth component. These parameters are nonetheless hard to estimate in many practical cases. Recent works address the problem by estimating either parameter via suitable adaptive strategies. In our work both parameters can be estimated at the same time by means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation of \(L\) is performed. For this scheme, theoretical convergence results are proved, showing that a \(\mathcal{O}( e^{-K\sqrt{\mu/L}n})\) convergence speed can still be achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several numerical results are reported to confirm the practical interest of its use in many exemplar problems.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Conditioning</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Estimation</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Restarting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDEgsSsxNLUkt0nUrSk1VcPMMDnFUSKpUcExJLCjJLEtVCEotLkksKlFIzEtRcEpMzi4pAhKZeek8DKxpiTnFqbxQmptB2c01xNlDt6Aov7AUqCk-K7-0KA8oFW8EtNvM0tDSyNCYOFUABMg1gg</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Aujol, Jean-François</creator><creator>Calatroni, Luca</creator><creator>Dossal, Charles</creator><creator>Labarrière, Hippolyte</creator><creator>Rondepierre, Aude</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230726</creationdate><title>Parameter-Free FISTA by Adaptive Restart and Backtracking</title><author>Aujol, Jean-François ; Calatroni, Luca ; Dossal, Charles ; Labarrière, Hippolyte ; Rondepierre, Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28426919213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Conditioning</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Estimation</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Restarting</topic><toplevel>online_resources</toplevel><creatorcontrib>Aujol, Jean-François</creatorcontrib><creatorcontrib>Calatroni, Luca</creatorcontrib><creatorcontrib>Dossal, Charles</creatorcontrib><creatorcontrib>Labarrière, Hippolyte</creatorcontrib><creatorcontrib>Rondepierre, Aude</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aujol, Jean-François</au><au>Calatroni, Luca</au><au>Dossal, Charles</au><au>Labarrière, Hippolyte</au><au>Rondepierre, Aude</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameter-Free FISTA by Adaptive Restart and Backtracking</atitle><jtitle>arXiv.org</jtitle><date>2023-07-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider a combined restarting and adaptive backtracking strategy for the popular Fast Iterative Shrinking-Thresholding Algorithm frequently employed for accelerating the convergence speed of large-scale structured convex optimization problems. Several variants of FISTA enjoy a provable linear convergence rate for the function values \(F(x_n)\) of the form \(\mathcal{O}( e^{-K\sqrt{\mu/L}~n})\) under the prior knowledge of problem conditioning, i.e. of the ratio between the (\L ojasiewicz) parameter \(\mu\) determining the growth of the objective function and the Lipschitz constant \(L\) of its smooth component. These parameters are nonetheless hard to estimate in many practical cases. Recent works address the problem by estimating either parameter via suitable adaptive strategies. In our work both parameters can be estimated at the same time by means of an algorithmic restarting scheme where, at each restart, a non-monotone estimation of \(L\) is performed. For this scheme, theoretical convergence results are proved, showing that a \(\mathcal{O}( e^{-K\sqrt{\mu/L}n})\) convergence speed can still be achieved along with quantitative estimates of the conditioning. The resulting Free-FISTA algorithm is therefore parameter-free. Several numerical results are reported to confirm the practical interest of its use in many exemplar problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2842691921
source Publicly Available Content Database
subjects Algorithms
Computational geometry
Conditioning
Convergence
Convexity
Estimation
Iterative methods
Optimization
Parameters
Restarting
title Parameter-Free FISTA by Adaptive Restart and Backtracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameter-Free%20FISTA%20by%20Adaptive%20Restart%20and%20Backtracking&rft.jtitle=arXiv.org&rft.au=Aujol,%20Jean-Fran%C3%A7ois&rft.date=2023-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2842691921%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28426919213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842691921&rft_id=info:pmid/&rfr_iscdi=true