Loading…

Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation

In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distan...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2023-08, Vol.48 (8), p.9739-9748
Main Authors: Akbas, Ayhan, Buyrukoglu, Selim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353
cites cdi_FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353
container_end_page 9748
container_issue 8
container_start_page 9739
container_title Arabian journal for science and engineering (2011)
container_volume 48
creator Akbas, Ayhan
Buyrukoglu, Selim
description In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.
doi_str_mv 10.1007/s13369-022-07365-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843078474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843078474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOHRfwKeCz9EkN22TR53zDwwVpri3kGS3o65NZ9Ih-_Z2q-CbT_dyOefcwy9JLhi9YpQW15EB5IpQzgktIM9IdpSMOFOMCC7Z8WEHkuXF4jQZx1hZKiSojDEYJYt5Z9y68qt06iM2tsZ0hib4_kJuTcRl-lEFrDHGdI4-tiF9xu67Dev0Djd1u2vQd-mrCabBDkM6jV3VmK5q_XlyUpo64vh3niXv99O3ySOZvTw8TW5mxAFTHbHOSqfKrCiNyB110qIxVAnLlbRgTSkK7sAtnYUCrFRLmYFCmxsuUAFkcJZcDrmb0H5tMXb6s90G37_UXAqghRSF6FV8ULnQxhiw1JvQFw07zajeQ9QDRN1D1AeIeh8Ngyn2Yr_C8Bf9j-sH0FJ2Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843078474</pqid></control><display><type>article</type><title>Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation</title><source>Springer Nature</source><creator>Akbas, Ayhan ; Buyrukoglu, Selim</creator><creatorcontrib>Akbas, Ayhan ; Buyrukoglu, Selim</creatorcontrib><description>In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-022-07365-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Ensemble learning ; Humanities and Social Sciences ; Machine learning ; Mathematical models ; multidisciplinary ; Nodes ; Parameter estimation ; Research Article-Computer Engineering and Computer Science ; Science ; Sensors ; Wireless sensor networks</subject><ispartof>Arabian journal for science and engineering (2011), 2023-08, Vol.48 (8), p.9739-9748</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353</citedby><cites>FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353</cites><orcidid>0000-0002-6425-104X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Akbas, Ayhan</creatorcontrib><creatorcontrib>Buyrukoglu, Selim</creatorcontrib><title>Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.</description><subject>Engineering</subject><subject>Ensemble learning</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Nodes</subject><subject>Parameter estimation</subject><subject>Research Article-Computer Engineering and Computer Science</subject><subject>Science</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYsoOHRfwKeCz9EkN22TR53zDwwVpri3kGS3o65NZ9Ih-_Z2q-CbT_dyOefcwy9JLhi9YpQW15EB5IpQzgktIM9IdpSMOFOMCC7Z8WEHkuXF4jQZx1hZKiSojDEYJYt5Z9y68qt06iM2tsZ0hib4_kJuTcRl-lEFrDHGdI4-tiF9xu67Dev0Djd1u2vQd-mrCabBDkM6jV3VmK5q_XlyUpo64vh3niXv99O3ySOZvTw8TW5mxAFTHbHOSqfKrCiNyB110qIxVAnLlbRgTSkK7sAtnYUCrFRLmYFCmxsuUAFkcJZcDrmb0H5tMXb6s90G37_UXAqghRSF6FV8ULnQxhiw1JvQFw07zajeQ9QDRN1D1AeIeh8Ngyn2Yr_C8Bf9j-sH0FJ2Lw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Akbas, Ayhan</creator><creator>Buyrukoglu, Selim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6425-104X</orcidid></search><sort><creationdate>20230801</creationdate><title>Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation</title><author>Akbas, Ayhan ; Buyrukoglu, Selim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Engineering</topic><topic>Ensemble learning</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Nodes</topic><topic>Parameter estimation</topic><topic>Research Article-Computer Engineering and Computer Science</topic><topic>Science</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbas, Ayhan</creatorcontrib><creatorcontrib>Buyrukoglu, Selim</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbas, Ayhan</au><au>Buyrukoglu, Selim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>48</volume><issue>8</issue><spage>9739</spage><epage>9748</epage><pages>9739-9748</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-022-07365-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6425-104X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2023-08, Vol.48 (8), p.9739-9748
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2843078474
source Springer Nature
subjects Engineering
Ensemble learning
Humanities and Social Sciences
Machine learning
Mathematical models
multidisciplinary
Nodes
Parameter estimation
Research Article-Computer Engineering and Computer Science
Science
Sensors
Wireless sensor networks
title Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking%20Ensemble%20Learning-Based%20Wireless%20Sensor%20Network%20Deployment%20Parameter%20Estimation&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Akbas,%20Ayhan&rft.date=2023-08-01&rft.volume=48&rft.issue=8&rft.spage=9739&rft.epage=9748&rft.pages=9739-9748&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-022-07365-5&rft_dat=%3Cproquest_cross%3E2843078474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bcb8c9f57fa46c0c8beaa094b298b3baf472c3cdcb373b89d8539eb6a24e93353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843078474&rft_id=info:pmid/&rfr_iscdi=true