Loading…
On a New Type of Unitoid Matrices
The cosquare of a nonsingular complex matrix is defined as in theory of -congruences and as in theory of Hermitian congruences. There is one more product of a similar kind, namely, . In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within som...
Saved in:
Published in: | Computational mathematics and mathematical physics 2023-06, Vol.63 (6), p.929-933 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-a6abf9130df37f797cf444b3fcb238633a16e67b3364de76237669a7cffa79443 |
container_end_page | 933 |
container_issue | 6 |
container_start_page | 929 |
container_title | Computational mathematics and mathematical physics |
container_volume | 63 |
creator | Ikramov, Kh. D. |
description | The cosquare of a nonsingular complex matrix
is defined as
in theory of
-congruences and as
in theory of Hermitian congruences. There is one more product of a similar kind, namely,
. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form? |
doi_str_mv | 10.1134/S096554252306009X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843078685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843078685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-a6abf9130df37f797cf444b3fcb238633a16e67b3364de76237669a7cffa79443</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcV19UkL3lJljL4BaOzcAbchbRNpIO2Nekg8-9tqeBCXL3FPec-uIScM3rFGIjrF2pQSsElB4qUmtcDMmNSyhwR-SGZjXE-5sfkJKUtpQyNhhm5WDWZy579V7bedz5rQ7Zp6r6tq-zJ9bEufTolR8G9J3_2c-dkc3e7Xjzky9X94-JmmZccdZ87dEUwDGgVQAVlVBmEEAWEsuCgEcAx9KgKABSVV8hBIRo3YMEpIwTMyeXU28X2c-dTb7ftLjbDS8u1AKo0ajlQbKLK2KYUfbBdrD9c3FtG7biE_bPE4PDJSQPbvPn42_y_9A3NbFzy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843078685</pqid></control><display><type>article</type><title>On a New Type of Unitoid Matrices</title><source>Springer Nature</source><creator>Ikramov, Kh. D.</creator><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><description>The cosquare of a nonsingular complex matrix
is defined as
in theory of
-congruences and as
in theory of Hermitian congruences. There is one more product of a similar kind, namely,
. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form?</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554252306009X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Canonical forms ; Computational Mathematics and Numerical Analysis ; Congruences ; General Numerical Methods ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics)</subject><ispartof>Computational mathematics and mathematical physics, 2023-06, Vol.63 (6), p.929-933</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2023, Vol. 63, No. 6, pp. 929–933. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2023, Vol. 63, No. 6, pp. 891–895.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-a6abf9130df37f797cf444b3fcb238633a16e67b3364de76237669a7cffa79443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><title>On a New Type of Unitoid Matrices</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The cosquare of a nonsingular complex matrix
is defined as
in theory of
-congruences and as
in theory of Hermitian congruences. There is one more product of a similar kind, namely,
. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form?</description><subject>Canonical forms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Congruences</subject><subject>General Numerical Methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcV19UkL3lJljL4BaOzcAbchbRNpIO2Nekg8-9tqeBCXL3FPec-uIScM3rFGIjrF2pQSsElB4qUmtcDMmNSyhwR-SGZjXE-5sfkJKUtpQyNhhm5WDWZy579V7bedz5rQ7Zp6r6tq-zJ9bEufTolR8G9J3_2c-dkc3e7Xjzky9X94-JmmZccdZ87dEUwDGgVQAVlVBmEEAWEsuCgEcAx9KgKABSVV8hBIRo3YMEpIwTMyeXU28X2c-dTb7ftLjbDS8u1AKo0ajlQbKLK2KYUfbBdrD9c3FtG7biE_bPE4PDJSQPbvPn42_y_9A3NbFzy</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ikramov, Kh. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>On a New Type of Unitoid Matrices</title><author>Ikramov, Kh. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-a6abf9130df37f797cf444b3fcb238633a16e67b3364de76237669a7cffa79443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Canonical forms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Congruences</topic><topic>General Numerical Methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikramov, Kh. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a New Type of Unitoid Matrices</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>63</volume><issue>6</issue><spage>929</spage><epage>933</epage><pages>929-933</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The cosquare of a nonsingular complex matrix
is defined as
in theory of
-congruences and as
in theory of Hermitian congruences. There is one more product of a similar kind, namely,
. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form?</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S096554252306009X</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2023-06, Vol.63 (6), p.929-933 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2843078685 |
source | Springer Nature |
subjects | Canonical forms Computational Mathematics and Numerical Analysis Congruences General Numerical Methods Mathematics Mathematics and Statistics Matrices (mathematics) |
title | On a New Type of Unitoid Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20New%20Type%20of%20Unitoid%20Matrices&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Ikramov,%20Kh.%20D.&rft.date=2023-06-01&rft.volume=63&rft.issue=6&rft.spage=929&rft.epage=933&rft.pages=929-933&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554252306009X&rft_dat=%3Cproquest_cross%3E2843078685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-a6abf9130df37f797cf444b3fcb238633a16e67b3364de76237669a7cffa79443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843078685&rft_id=info:pmid/&rfr_iscdi=true |