Loading…

An Experimental Study on the Impact of the Particle Size and Proportion of Composite Proppant on the Conductivity of Propped Fractures in Coalbed Methane Reservoirs following Pulverized Coal Fines Infiltration

Coalbed methane reservoirs exhibit a low strength and high heterogeneity, rendering them susceptible to coal fines generation during hydraulic fracturing operations. The detrimental impact of coal fines on the conductivity of the propped fracture has been overlooked, leading to a substantial negativ...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2023-07, Vol.11 (7), p.2205
Main Authors: Chen, Qing, Huang, Zhiqiang, Huang, Hao, Chen, Qi, Ling, Xingjie, Xin, Fubin, Kong, Xiangwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coalbed methane reservoirs exhibit a low strength and high heterogeneity, rendering them susceptible to coal fines generation during hydraulic fracturing operations. The detrimental impact of coal fines on the conductivity of the propped fracture has been overlooked, leading to a substantial negative effect on the later-stage recovery of coalbed methane reservoirs. Moreover, the particle size distribution of the composite proppant also affects the conductivity of the propped fracture. To mitigate the damage caused by coal fines to the conductivity of the proppant pack in CBM reservoirs, this study conducted conductivity tests on actual coal rock fractures. The aim was to assess the effect of various particle size ratios in composite proppant blends on the conductivity of complex fractures in CBM reservoirs. The ultimate goal was to identify an optimized proppant blending approach that is suitable for hydraulic fracturing in coal seams. The results indicated that, in terms of the short-term conductivity of coalbed methane reservoirs, the conductivity of composite proppants is primarily influenced by the proportion of large or small particles. A higher proportion of large particles corresponds to a stronger conductivity (e.g., the conductivity is highest at a particle ratio of 5:1:1 for large, medium, and small particles). On the other hand, a higher proportion of small particles leads to a poorer conductivity (the conductivity is lowest when the particle ratio is 1:1:5). In the long-term conductivity of coalbed methane reservoirs, the fluid flushing of the fracture surfaces generates coal fines, and small particles can fill the gaps between larger particles, hindering the infiltration of coal fines. Therefore, it is important to control the particle size ratio of composite proppants, with a predominant proportion of larger particles. This approach can maintain long-term conductivity and prevent the excessive infiltration of coal fines, thereby avoiding fracture blockage (e.g., the conductivity is highest at a particle ratio of 5:1:5, followed by a ratio of 3:1:3). Furthermore, considering the influence of proppant placement methods and the support effect on near-wellbore opening fractures and far-end sliding fractures, segmented placement is utilized to fully fill the fractures for short-term conductivity, whereas mixed placement is employed for long-term conductivity to achieve a balance in particle gaps and hinder the infiltration of coal fines. The findi
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11072205