Loading…

Spectral theory of regular sequences: parametrisation and spectral characterisation

We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of thes...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Coons, Michael, Evans, James, Gohlke, Philipp, Mañibo, Neil
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Coons, Michael
Evans, James
Gohlke, Philipp
Mañibo, Neil
description We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2843959270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843959270</sourcerecordid><originalsourceid>FETCH-proquest_journals_28439592703</originalsourceid><addsrcrecordid>eNqNzDEPgjAQBeDGxESi_IcmziS1BQFXo3HHnVzqIRBs8a4M_nsZZHd6w_feW4lIG3NIilTrjYiZe6WUPuY6y0wkqmpEGwgGGVr09JG-kYTPaQCSjO8JnUU-yREIXhioYwiddxLcQ_KytO2sNuCiO7FuYGCMf7kV--vlfr4lI_n5kUPd-4ncTLUuUlNmpc6V-a_1BdRcQWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843959270</pqid></control><display><type>article</type><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><source>Publicly Available Content Database</source><creator>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</creator><creatorcontrib>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</creatorcontrib><description>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commutativity ; Group theory ; Liapunov exponents ; Parameterization ; Spectral theory</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2843959270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Mañibo, Neil</creatorcontrib><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><title>arXiv.org</title><description>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</description><subject>Commutativity</subject><subject>Group theory</subject><subject>Liapunov exponents</subject><subject>Parameterization</subject><subject>Spectral theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzDEPgjAQBeDGxESi_IcmziS1BQFXo3HHnVzqIRBs8a4M_nsZZHd6w_feW4lIG3NIilTrjYiZe6WUPuY6y0wkqmpEGwgGGVr09JG-kYTPaQCSjO8JnUU-yREIXhioYwiddxLcQ_KytO2sNuCiO7FuYGCMf7kV--vlfr4lI_n5kUPd-4ncTLUuUlNmpc6V-a_1BdRcQWg</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Coons, Michael</creator><creator>Evans, James</creator><creator>Gohlke, Philipp</creator><creator>Mañibo, Neil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230727</creationdate><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><author>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28439592703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Commutativity</topic><topic>Group theory</topic><topic>Liapunov exponents</topic><topic>Parameterization</topic><topic>Spectral theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Mañibo, Neil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coons, Michael</au><au>Evans, James</au><au>Gohlke, Philipp</au><au>Mañibo, Neil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spectral theory of regular sequences: parametrisation and spectral characterisation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2843959270
source Publicly Available Content Database
subjects Commutativity
Group theory
Liapunov exponents
Parameterization
Spectral theory
title Spectral theory of regular sequences: parametrisation and spectral characterisation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spectral%20theory%20of%20regular%20sequences:%20parametrisation%20and%20spectral%20characterisation&rft.jtitle=arXiv.org&rft.au=Coons,%20Michael&rft.date=2023-07-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2843959270%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28439592703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843959270&rft_id=info:pmid/&rfr_iscdi=true