Loading…
Spectral theory of regular sequences: parametrisation and spectral characterisation
We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of thes...
Saved in:
Published in: | arXiv.org 2023-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Coons, Michael Evans, James Gohlke, Philipp Mañibo, Neil |
description | We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2843959270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843959270</sourcerecordid><originalsourceid>FETCH-proquest_journals_28439592703</originalsourceid><addsrcrecordid>eNqNzDEPgjAQBeDGxESi_IcmziS1BQFXo3HHnVzqIRBs8a4M_nsZZHd6w_feW4lIG3NIilTrjYiZe6WUPuY6y0wkqmpEGwgGGVr09JG-kYTPaQCSjO8JnUU-yREIXhioYwiddxLcQ_KytO2sNuCiO7FuYGCMf7kV--vlfr4lI_n5kUPd-4ncTLUuUlNmpc6V-a_1BdRcQWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843959270</pqid></control><display><type>article</type><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><source>Publicly Available Content Database</source><creator>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</creator><creatorcontrib>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</creatorcontrib><description>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commutativity ; Group theory ; Liapunov exponents ; Parameterization ; Spectral theory</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2843959270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Mañibo, Neil</creatorcontrib><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><title>arXiv.org</title><description>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</description><subject>Commutativity</subject><subject>Group theory</subject><subject>Liapunov exponents</subject><subject>Parameterization</subject><subject>Spectral theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzDEPgjAQBeDGxESi_IcmziS1BQFXo3HHnVzqIRBs8a4M_nsZZHd6w_feW4lIG3NIilTrjYiZe6WUPuY6y0wkqmpEGwgGGVr09JG-kYTPaQCSjO8JnUU-yREIXhioYwiddxLcQ_KytO2sNuCiO7FuYGCMf7kV--vlfr4lI_n5kUPd-4ncTLUuUlNmpc6V-a_1BdRcQWg</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Coons, Michael</creator><creator>Evans, James</creator><creator>Gohlke, Philipp</creator><creator>Mañibo, Neil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230727</creationdate><title>Spectral theory of regular sequences: parametrisation and spectral characterisation</title><author>Coons, Michael ; Evans, James ; Gohlke, Philipp ; Mañibo, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28439592703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Commutativity</topic><topic>Group theory</topic><topic>Liapunov exponents</topic><topic>Parameterization</topic><topic>Spectral theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Coons, Michael</creatorcontrib><creatorcontrib>Evans, James</creatorcontrib><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Mañibo, Neil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coons, Michael</au><au>Evans, James</au><au>Gohlke, Philipp</au><au>Mañibo, Neil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spectral theory of regular sequences: parametrisation and spectral characterisation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We extend the existence of ghost measures beyond nonnegative primitive regular sequences to a large class of nonnegative real-valued regular sequences. In the general case, where the ghost measure is not unique, we show that they can be parametrised by a compact abelian group. For a subclass of these measures, by replacing primitivity with a commutativity condition, we show that these measures have an infinite convolution structure similar to Bernoulli convolutions. Using this structure, we show that these ghost measures have pure spectral type. Further, we provide results towards a classification of the spectral type based on inequalities involving the spectral radius, joint spectral radius, and Lyapunov exponent of the underlying set of matrices. In the case that the underlying measure is pure point, we show that the support of the measure must be a subset of the rational numbers, a result that resolves a new case of the finiteness conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2843959270 |
source | Publicly Available Content Database |
subjects | Commutativity Group theory Liapunov exponents Parameterization Spectral theory |
title | Spectral theory of regular sequences: parametrisation and spectral characterisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spectral%20theory%20of%20regular%20sequences:%20parametrisation%20and%20spectral%20characterisation&rft.jtitle=arXiv.org&rft.au=Coons,%20Michael&rft.date=2023-07-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2843959270%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28439592703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843959270&rft_id=info:pmid/&rfr_iscdi=true |