Loading…

Assessment of the predictability of inflow to reservoirs through Bayesian causality

This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological sciences journal 2023-07, Vol.68 (10), p.1323-1337
Main Authors: Zazo, Santiago, Molina, Jose-Luis, Macian-Sorribes, Hector, Pulido-Velazquez, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3
cites cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3
container_end_page 1337
container_issue 10
container_start_page 1323
container_title Hydrological sciences journal
container_volume 68
creator Zazo, Santiago
Molina, Jose-Luis
Macian-Sorribes, Hector
Pulido-Velazquez, Manuel
description This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.
doi_str_mv 10.1080/02626667.2023.2200143
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2843984995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843984995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIAy4npp7k521eIOCC3UdzswkNmU6qUlG6ds7Q-vW1YHD95_Lh9A1wTOCFb7FVFIp5XxGMWUzSjEmnJ2gCSUCl4wzcYomI1OO0Dm6SGmDMeNasgl6W6RkU9raLhfBFXlti120ja8zVL71eT92fefa8FPkUESbbPwOPqYBjaH_XBf3sLfJQ1fU0CcYI5fozEGb7NWxTtHH48P78rlcvT69LBersmZM5RKq4Wwm55oAIZUWQJkjqqoEbsBBLZlQWFVK8rnSlMtKiMYRTUVDseaSAJuim8PcXQxfvU3ZbEIfu2GloYozrbjWYqDEgapjSClaZ3bRbyHuDcFm9Gf-_JnRnzn6G3J3h9zwfYhb-AmxbUyGfRuii9DVPhn2_4hf1qR2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843984995</pqid></control><display><type>article</type><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</creator><creatorcontrib>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</creatorcontrib><description>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2023.2200143</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Bayes' theorem ; Bayesian analysis ; Bayesian theory ; causality ; Hydrologic models ; Hydrology ; Inflow ; Mathematical models ; Modelling ; Prediction models ; predictive models ; Probability theory ; Reservoirs ; Runoff ; temporal runoff fractions ; temporal series analysis ; Water inflow ; Watersheds</subject><ispartof>Hydrological sciences journal, 2023-07, Vol.68 (10), p.1323-1337</ispartof><rights>2023 IAHS 2023</rights><rights>2023 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</citedby><cites>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</cites><orcidid>0000-0003-4077-9955 ; 0000-0001-7009-6130 ; 0000-0002-1001-3601 ; 0000-0002-0265-1590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Zazo, Santiago</creatorcontrib><creatorcontrib>Molina, Jose-Luis</creatorcontrib><creatorcontrib>Macian-Sorribes, Hector</creatorcontrib><creatorcontrib>Pulido-Velazquez, Manuel</creatorcontrib><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><title>Hydrological sciences journal</title><description>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</description><subject>Bayes' theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>causality</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Prediction models</subject><subject>predictive models</subject><subject>Probability theory</subject><subject>Reservoirs</subject><subject>Runoff</subject><subject>temporal runoff fractions</subject><subject>temporal series analysis</subject><subject>Water inflow</subject><subject>Watersheds</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIAy4npp7k521eIOCC3UdzswkNmU6qUlG6ds7Q-vW1YHD95_Lh9A1wTOCFb7FVFIp5XxGMWUzSjEmnJ2gCSUCl4wzcYomI1OO0Dm6SGmDMeNasgl6W6RkU9raLhfBFXlti120ja8zVL71eT92fefa8FPkUESbbPwOPqYBjaH_XBf3sLfJQ1fU0CcYI5fozEGb7NWxTtHH48P78rlcvT69LBersmZM5RKq4Wwm55oAIZUWQJkjqqoEbsBBLZlQWFVK8rnSlMtKiMYRTUVDseaSAJuim8PcXQxfvU3ZbEIfu2GloYozrbjWYqDEgapjSClaZ3bRbyHuDcFm9Gf-_JnRnzn6G3J3h9zwfYhb-AmxbUyGfRuii9DVPhn2_4hf1qR2sA</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Zazo, Santiago</creator><creator>Molina, Jose-Luis</creator><creator>Macian-Sorribes, Hector</creator><creator>Pulido-Velazquez, Manuel</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4077-9955</orcidid><orcidid>https://orcid.org/0000-0001-7009-6130</orcidid><orcidid>https://orcid.org/0000-0002-1001-3601</orcidid><orcidid>https://orcid.org/0000-0002-0265-1590</orcidid></search><sort><creationdate>20230727</creationdate><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><author>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes' theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>causality</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Prediction models</topic><topic>predictive models</topic><topic>Probability theory</topic><topic>Reservoirs</topic><topic>Runoff</topic><topic>temporal runoff fractions</topic><topic>temporal series analysis</topic><topic>Water inflow</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zazo, Santiago</creatorcontrib><creatorcontrib>Molina, Jose-Luis</creatorcontrib><creatorcontrib>Macian-Sorribes, Hector</creatorcontrib><creatorcontrib>Pulido-Velazquez, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zazo, Santiago</au><au>Molina, Jose-Luis</au><au>Macian-Sorribes, Hector</au><au>Pulido-Velazquez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the predictability of inflow to reservoirs through Bayesian causality</atitle><jtitle>Hydrological sciences journal</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>68</volume><issue>10</issue><spage>1323</spage><epage>1337</epage><pages>1323-1337</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2023.2200143</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4077-9955</orcidid><orcidid>https://orcid.org/0000-0001-7009-6130</orcidid><orcidid>https://orcid.org/0000-0002-1001-3601</orcidid><orcidid>https://orcid.org/0000-0002-0265-1590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2023-07, Vol.68 (10), p.1323-1337
issn 0262-6667
2150-3435
language eng
recordid cdi_proquest_journals_2843984995
source Taylor and Francis Science and Technology Collection
subjects Bayes' theorem
Bayesian analysis
Bayesian theory
causality
Hydrologic models
Hydrology
Inflow
Mathematical models
Modelling
Prediction models
predictive models
Probability theory
Reservoirs
Runoff
temporal runoff fractions
temporal series analysis
Water inflow
Watersheds
title Assessment of the predictability of inflow to reservoirs through Bayesian causality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20predictability%20of%20inflow%20to%20reservoirs%20through%20Bayesian%20causality&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Zazo,%20Santiago&rft.date=2023-07-27&rft.volume=68&rft.issue=10&rft.spage=1323&rft.epage=1337&rft.pages=1323-1337&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2023.2200143&rft_dat=%3Cproquest_infor%3E2843984995%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843984995&rft_id=info:pmid/&rfr_iscdi=true