Loading…
Assessment of the predictability of inflow to reservoirs through Bayesian causality
This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the...
Saved in:
Published in: | Hydrological sciences journal 2023-07, Vol.68 (10), p.1323-1337 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3 |
container_end_page | 1337 |
container_issue | 10 |
container_start_page | 1323 |
container_title | Hydrological sciences journal |
container_volume | 68 |
creator | Zazo, Santiago Molina, Jose-Luis Macian-Sorribes, Hector Pulido-Velazquez, Manuel |
description | This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework. |
doi_str_mv | 10.1080/02626667.2023.2200143 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2843984995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843984995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIAy4npp7k521eIOCC3UdzswkNmU6qUlG6ds7Q-vW1YHD95_Lh9A1wTOCFb7FVFIp5XxGMWUzSjEmnJ2gCSUCl4wzcYomI1OO0Dm6SGmDMeNasgl6W6RkU9raLhfBFXlti120ja8zVL71eT92fefa8FPkUESbbPwOPqYBjaH_XBf3sLfJQ1fU0CcYI5fozEGb7NWxTtHH48P78rlcvT69LBersmZM5RKq4Wwm55oAIZUWQJkjqqoEbsBBLZlQWFVK8rnSlMtKiMYRTUVDseaSAJuim8PcXQxfvU3ZbEIfu2GloYozrbjWYqDEgapjSClaZ3bRbyHuDcFm9Gf-_JnRnzn6G3J3h9zwfYhb-AmxbUyGfRuii9DVPhn2_4hf1qR2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843984995</pqid></control><display><type>article</type><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</creator><creatorcontrib>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</creatorcontrib><description>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2023.2200143</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Bayes' theorem ; Bayesian analysis ; Bayesian theory ; causality ; Hydrologic models ; Hydrology ; Inflow ; Mathematical models ; Modelling ; Prediction models ; predictive models ; Probability theory ; Reservoirs ; Runoff ; temporal runoff fractions ; temporal series analysis ; Water inflow ; Watersheds</subject><ispartof>Hydrological sciences journal, 2023-07, Vol.68 (10), p.1323-1337</ispartof><rights>2023 IAHS 2023</rights><rights>2023 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</citedby><cites>FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</cites><orcidid>0000-0003-4077-9955 ; 0000-0001-7009-6130 ; 0000-0002-1001-3601 ; 0000-0002-0265-1590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Zazo, Santiago</creatorcontrib><creatorcontrib>Molina, Jose-Luis</creatorcontrib><creatorcontrib>Macian-Sorribes, Hector</creatorcontrib><creatorcontrib>Pulido-Velazquez, Manuel</creatorcontrib><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><title>Hydrological sciences journal</title><description>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</description><subject>Bayes' theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>causality</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Prediction models</subject><subject>predictive models</subject><subject>Probability theory</subject><subject>Reservoirs</subject><subject>Runoff</subject><subject>temporal runoff fractions</subject><subject>temporal series analysis</subject><subject>Water inflow</subject><subject>Watersheds</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIAy4npp7k521eIOCC3UdzswkNmU6qUlG6ds7Q-vW1YHD95_Lh9A1wTOCFb7FVFIp5XxGMWUzSjEmnJ2gCSUCl4wzcYomI1OO0Dm6SGmDMeNasgl6W6RkU9raLhfBFXlti120ja8zVL71eT92fefa8FPkUESbbPwOPqYBjaH_XBf3sLfJQ1fU0CcYI5fozEGb7NWxTtHH48P78rlcvT69LBersmZM5RKq4Wwm55oAIZUWQJkjqqoEbsBBLZlQWFVK8rnSlMtKiMYRTUVDseaSAJuim8PcXQxfvU3ZbEIfu2GloYozrbjWYqDEgapjSClaZ3bRbyHuDcFm9Gf-_JnRnzn6G3J3h9zwfYhb-AmxbUyGfRuii9DVPhn2_4hf1qR2sA</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Zazo, Santiago</creator><creator>Molina, Jose-Luis</creator><creator>Macian-Sorribes, Hector</creator><creator>Pulido-Velazquez, Manuel</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4077-9955</orcidid><orcidid>https://orcid.org/0000-0001-7009-6130</orcidid><orcidid>https://orcid.org/0000-0002-1001-3601</orcidid><orcidid>https://orcid.org/0000-0002-0265-1590</orcidid></search><sort><creationdate>20230727</creationdate><title>Assessment of the predictability of inflow to reservoirs through Bayesian causality</title><author>Zazo, Santiago ; Molina, Jose-Luis ; Macian-Sorribes, Hector ; Pulido-Velazquez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes' theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>causality</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Prediction models</topic><topic>predictive models</topic><topic>Probability theory</topic><topic>Reservoirs</topic><topic>Runoff</topic><topic>temporal runoff fractions</topic><topic>temporal series analysis</topic><topic>Water inflow</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zazo, Santiago</creatorcontrib><creatorcontrib>Molina, Jose-Luis</creatorcontrib><creatorcontrib>Macian-Sorribes, Hector</creatorcontrib><creatorcontrib>Pulido-Velazquez, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zazo, Santiago</au><au>Molina, Jose-Luis</au><au>Macian-Sorribes, Hector</au><au>Pulido-Velazquez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the predictability of inflow to reservoirs through Bayesian causality</atitle><jtitle>Hydrological sciences journal</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>68</volume><issue>10</issue><spage>1323</spage><epage>1337</epage><pages>1323-1337</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>This research assesses the predictive capacity of Bayesian causality through causal reasoning (CR), which has been successfully applied to the study of reservoir inflows. We combined autoregressive development with a causal modelling approach through a "proof of concept" that assesses the predictive capacity of the approach. The analytical power of CR revealed the logical temporal structure that defines the general behaviour of inflows, which was latent in the historical records. This allowed identifying/quantifying, through a dependence matrix, two temporal runoff fractions, one due to time and the other not. Finally, a predictive model for each temporal fraction was implemented, evaluating its forecasting skills through mean absolute error and root mean square error. This was applied to the reservoirs that supply water to the city of Ávila (Spain), whose watersheds present strong independent temporal behaviour. These results open new possibilities for developing predictive hydrological models within a CR modelling framework.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02626667.2023.2200143</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4077-9955</orcidid><orcidid>https://orcid.org/0000-0001-7009-6130</orcidid><orcidid>https://orcid.org/0000-0002-1001-3601</orcidid><orcidid>https://orcid.org/0000-0002-0265-1590</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-6667 |
ispartof | Hydrological sciences journal, 2023-07, Vol.68 (10), p.1323-1337 |
issn | 0262-6667 2150-3435 |
language | eng |
recordid | cdi_proquest_journals_2843984995 |
source | Taylor and Francis Science and Technology Collection |
subjects | Bayes' theorem Bayesian analysis Bayesian theory causality Hydrologic models Hydrology Inflow Mathematical models Modelling Prediction models predictive models Probability theory Reservoirs Runoff temporal runoff fractions temporal series analysis Water inflow Watersheds |
title | Assessment of the predictability of inflow to reservoirs through Bayesian causality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20predictability%20of%20inflow%20to%20reservoirs%20through%20Bayesian%20causality&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Zazo,%20Santiago&rft.date=2023-07-27&rft.volume=68&rft.issue=10&rft.spage=1323&rft.epage=1337&rft.pages=1323-1337&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2023.2200143&rft_dat=%3Cproquest_infor%3E2843984995%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-ab62636791a11b95a23f18bb50dafac635808b864789246b55df1925d209461a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843984995&rft_id=info:pmid/&rfr_iscdi=true |