Loading…

Highly Processable Ionogels with Mechanical Robustness

Currently, the increasing needs of conductive ionogels with intricate shapes and high processability by individual requirements of next‐generation flexible electronics constitute significant challenges. Here, the design of highly processable ionogels is reported with mechanical robustness by self‐as...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-08, Vol.33 (31), p.n/a
Main Authors: Ma, Chuao, Wei, Jun, Zhang, Yuqiang, Chen, Xingchao, Liu, Chan, Diao, Shen, Gao, Yuan, Matyjaszewski, Krzysztof, Liu, Hongliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73
cites cdi_FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 33
creator Ma, Chuao
Wei, Jun
Zhang, Yuqiang
Chen, Xingchao
Liu, Chan
Diao, Shen
Gao, Yuan
Matyjaszewski, Krzysztof
Liu, Hongliang
description Currently, the increasing needs of conductive ionogels with intricate shapes and high processability by individual requirements of next‐generation flexible electronics constitute significant challenges. Here, the design of highly processable ionogels is reported with mechanical robustness by self‐assembly of a common triblock copolymer into a precursor in functional mixed ionic liquids (ILs) containing conductivity‐enhancing and polymerizable strength‐enhancing components. The subsequent in situ polymerization of the precursor forms physical‐co‐chemical cross‐linked networks, in which the entanglement between physical and chemical cross‐linked networks and microphase separation give rise to mechanical robustness of as‐fabricated ionogel. The viscosity of the self‐assembled precursor can be rationally tuned, which makes the fabrication process compatible with diverse technologies including inkjet printing, spray coating, and 3D printing. By virtue of highly processable capability of the designed ionogels, an auxetic‐structured ionogel can be easily generated using 3D printing, which exhibits greatly improved sensitivity and thus is able to monitor tiny deformations. This study that relies on designing functional mixed ILs as the dispersion phase rather than focusing on synthesizing new‐type polymers establishes a new route for versatile and programmable fabrication of high‐performance ionogels for broader applications. Conductive ionogels with high processability and mechanical robustness are fabricated by self‐assembly of a triblock copolymer, PS‐PEO‐PS, in mixed ionic liquids, [VBBIm]NTf2, and [EMIm]NTf2, and subsequent in situ chemical cross‐linking of [VBBIm]NTf2. This fabrication route is compatible with inkjet printing, spray coating and 3D printing, which will broaden the applications of ionogels.
doi_str_mv 10.1002/adfm.202211771
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844021678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844021678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXzwXPnfnVvOY4pnODDUUUvIUkTdeOrplJx9h_b8dkHj29d_i-9-BD6J7gEcGYPuqi3IwoppQQAHKBBkQQkTJM88vzTr6u0U2Ma4x7hvEBErN6VTWH5C1462LUpnHJ3Ld-5ZqY7OuuSpbOVrqtrW6Sd292sWt77hZdlbqJ7u53DtHn9PljMksXry_zyXiRWkaApNI6nBdMO0akACEzZwB4pgGkzqxl0ugsB5sZzkHjkgEvNDWOi4JJqg2wIXo43d0G_71zsVNrvwtt_1LRnHNMiYC8p0YnygYfY3Cl2oZ6o8NBEayObdSxjTq36QV5EvZ14w7_0Gr8NF3-uT9oYmdb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844021678</pqid></control><display><type>article</type><title>Highly Processable Ionogels with Mechanical Robustness</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ma, Chuao ; Wei, Jun ; Zhang, Yuqiang ; Chen, Xingchao ; Liu, Chan ; Diao, Shen ; Gao, Yuan ; Matyjaszewski, Krzysztof ; Liu, Hongliang</creator><creatorcontrib>Ma, Chuao ; Wei, Jun ; Zhang, Yuqiang ; Chen, Xingchao ; Liu, Chan ; Diao, Shen ; Gao, Yuan ; Matyjaszewski, Krzysztof ; Liu, Hongliang</creatorcontrib><description>Currently, the increasing needs of conductive ionogels with intricate shapes and high processability by individual requirements of next‐generation flexible electronics constitute significant challenges. Here, the design of highly processable ionogels is reported with mechanical robustness by self‐assembly of a common triblock copolymer into a precursor in functional mixed ionic liquids (ILs) containing conductivity‐enhancing and polymerizable strength‐enhancing components. The subsequent in situ polymerization of the precursor forms physical‐co‐chemical cross‐linked networks, in which the entanglement between physical and chemical cross‐linked networks and microphase separation give rise to mechanical robustness of as‐fabricated ionogel. The viscosity of the self‐assembled precursor can be rationally tuned, which makes the fabrication process compatible with diverse technologies including inkjet printing, spray coating, and 3D printing. By virtue of highly processable capability of the designed ionogels, an auxetic‐structured ionogel can be easily generated using 3D printing, which exhibits greatly improved sensitivity and thus is able to monitor tiny deformations. This study that relies on designing functional mixed ILs as the dispersion phase rather than focusing on synthesizing new‐type polymers establishes a new route for versatile and programmable fabrication of high‐performance ionogels for broader applications. Conductive ionogels with high processability and mechanical robustness are fabricated by self‐assembly of a triblock copolymer, PS‐PEO‐PS, in mixed ionic liquids, [VBBIm]NTf2, and [EMIm]NTf2, and subsequent in situ chemical cross‐linking of [VBBIm]NTf2. This fabrication route is compatible with inkjet printing, spray coating and 3D printing, which will broaden the applications of ionogels.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202211771</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Block copolymers ; Entanglement ; Flexible components ; Inkjet printing ; Ionic liquids ; ionogels ; Materials science ; Polymerization ; Prepolymers ; Robustness ; Self-assembly ; spray coatings ; strain sensors ; Three dimensional printing</subject><ispartof>Advanced functional materials, 2023-08, Vol.33 (31), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73</citedby><cites>FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73</cites><orcidid>0000-0003-1960-3402 ; 0000-0002-6781-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Chuao</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhang, Yuqiang</creatorcontrib><creatorcontrib>Chen, Xingchao</creatorcontrib><creatorcontrib>Liu, Chan</creatorcontrib><creatorcontrib>Diao, Shen</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Liu, Hongliang</creatorcontrib><title>Highly Processable Ionogels with Mechanical Robustness</title><title>Advanced functional materials</title><description>Currently, the increasing needs of conductive ionogels with intricate shapes and high processability by individual requirements of next‐generation flexible electronics constitute significant challenges. Here, the design of highly processable ionogels is reported with mechanical robustness by self‐assembly of a common triblock copolymer into a precursor in functional mixed ionic liquids (ILs) containing conductivity‐enhancing and polymerizable strength‐enhancing components. The subsequent in situ polymerization of the precursor forms physical‐co‐chemical cross‐linked networks, in which the entanglement between physical and chemical cross‐linked networks and microphase separation give rise to mechanical robustness of as‐fabricated ionogel. The viscosity of the self‐assembled precursor can be rationally tuned, which makes the fabrication process compatible with diverse technologies including inkjet printing, spray coating, and 3D printing. By virtue of highly processable capability of the designed ionogels, an auxetic‐structured ionogel can be easily generated using 3D printing, which exhibits greatly improved sensitivity and thus is able to monitor tiny deformations. This study that relies on designing functional mixed ILs as the dispersion phase rather than focusing on synthesizing new‐type polymers establishes a new route for versatile and programmable fabrication of high‐performance ionogels for broader applications. Conductive ionogels with high processability and mechanical robustness are fabricated by self‐assembly of a triblock copolymer, PS‐PEO‐PS, in mixed ionic liquids, [VBBIm]NTf2, and [EMIm]NTf2, and subsequent in situ chemical cross‐linking of [VBBIm]NTf2. This fabrication route is compatible with inkjet printing, spray coating and 3D printing, which will broaden the applications of ionogels.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Block copolymers</subject><subject>Entanglement</subject><subject>Flexible components</subject><subject>Inkjet printing</subject><subject>Ionic liquids</subject><subject>ionogels</subject><subject>Materials science</subject><subject>Polymerization</subject><subject>Prepolymers</subject><subject>Robustness</subject><subject>Self-assembly</subject><subject>spray coatings</subject><subject>strain sensors</subject><subject>Three dimensional printing</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXzwXPnfnVvOY4pnODDUUUvIUkTdeOrplJx9h_b8dkHj29d_i-9-BD6J7gEcGYPuqi3IwoppQQAHKBBkQQkTJM88vzTr6u0U2Ma4x7hvEBErN6VTWH5C1462LUpnHJ3Ld-5ZqY7OuuSpbOVrqtrW6Sd292sWt77hZdlbqJ7u53DtHn9PljMksXry_zyXiRWkaApNI6nBdMO0akACEzZwB4pgGkzqxl0ugsB5sZzkHjkgEvNDWOi4JJqg2wIXo43d0G_71zsVNrvwtt_1LRnHNMiYC8p0YnygYfY3Cl2oZ6o8NBEayObdSxjTq36QV5EvZ14w7_0Gr8NF3-uT9oYmdb</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Ma, Chuao</creator><creator>Wei, Jun</creator><creator>Zhang, Yuqiang</creator><creator>Chen, Xingchao</creator><creator>Liu, Chan</creator><creator>Diao, Shen</creator><creator>Gao, Yuan</creator><creator>Matyjaszewski, Krzysztof</creator><creator>Liu, Hongliang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid><orcidid>https://orcid.org/0000-0002-6781-3546</orcidid></search><sort><creationdate>20230801</creationdate><title>Highly Processable Ionogels with Mechanical Robustness</title><author>Ma, Chuao ; Wei, Jun ; Zhang, Yuqiang ; Chen, Xingchao ; Liu, Chan ; Diao, Shen ; Gao, Yuan ; Matyjaszewski, Krzysztof ; Liu, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Block copolymers</topic><topic>Entanglement</topic><topic>Flexible components</topic><topic>Inkjet printing</topic><topic>Ionic liquids</topic><topic>ionogels</topic><topic>Materials science</topic><topic>Polymerization</topic><topic>Prepolymers</topic><topic>Robustness</topic><topic>Self-assembly</topic><topic>spray coatings</topic><topic>strain sensors</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chuao</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhang, Yuqiang</creatorcontrib><creatorcontrib>Chen, Xingchao</creatorcontrib><creatorcontrib>Liu, Chan</creatorcontrib><creatorcontrib>Diao, Shen</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Liu, Hongliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Chuao</au><au>Wei, Jun</au><au>Zhang, Yuqiang</au><au>Chen, Xingchao</au><au>Liu, Chan</au><au>Diao, Shen</au><au>Gao, Yuan</au><au>Matyjaszewski, Krzysztof</au><au>Liu, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Processable Ionogels with Mechanical Robustness</atitle><jtitle>Advanced functional materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Currently, the increasing needs of conductive ionogels with intricate shapes and high processability by individual requirements of next‐generation flexible electronics constitute significant challenges. Here, the design of highly processable ionogels is reported with mechanical robustness by self‐assembly of a common triblock copolymer into a precursor in functional mixed ionic liquids (ILs) containing conductivity‐enhancing and polymerizable strength‐enhancing components. The subsequent in situ polymerization of the precursor forms physical‐co‐chemical cross‐linked networks, in which the entanglement between physical and chemical cross‐linked networks and microphase separation give rise to mechanical robustness of as‐fabricated ionogel. The viscosity of the self‐assembled precursor can be rationally tuned, which makes the fabrication process compatible with diverse technologies including inkjet printing, spray coating, and 3D printing. By virtue of highly processable capability of the designed ionogels, an auxetic‐structured ionogel can be easily generated using 3D printing, which exhibits greatly improved sensitivity and thus is able to monitor tiny deformations. This study that relies on designing functional mixed ILs as the dispersion phase rather than focusing on synthesizing new‐type polymers establishes a new route for versatile and programmable fabrication of high‐performance ionogels for broader applications. Conductive ionogels with high processability and mechanical robustness are fabricated by self‐assembly of a triblock copolymer, PS‐PEO‐PS, in mixed ionic liquids, [VBBIm]NTf2, and [EMIm]NTf2, and subsequent in situ chemical cross‐linking of [VBBIm]NTf2. This fabrication route is compatible with inkjet printing, spray coating and 3D printing, which will broaden the applications of ionogels.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202211771</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1960-3402</orcidid><orcidid>https://orcid.org/0000-0002-6781-3546</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-08, Vol.33 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2844021678
source Wiley-Blackwell Read & Publish Collection
subjects 3-D printers
3D printing
Block copolymers
Entanglement
Flexible components
Inkjet printing
Ionic liquids
ionogels
Materials science
Polymerization
Prepolymers
Robustness
Self-assembly
spray coatings
strain sensors
Three dimensional printing
title Highly Processable Ionogels with Mechanical Robustness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Processable%20Ionogels%20with%20Mechanical%20Robustness&rft.jtitle=Advanced%20functional%20materials&rft.au=Ma,%20Chuao&rft.date=2023-08-01&rft.volume=33&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202211771&rft_dat=%3Cproquest_cross%3E2844021678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3171-9ce08d3ae31967695eb7745a779a5cc39ba587c5b447a0f374da2be46d392ab73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844021678&rft_id=info:pmid/&rfr_iscdi=true