Loading…
An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks
An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individua...
Saved in:
Published in: | Wireless personal communications 2023-08, Vol.131 (4), p.3089-3099 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93 |
container_end_page | 3099 |
container_issue | 4 |
container_start_page | 3089 |
container_title | Wireless personal communications |
container_volume | 131 |
creator | Kumari, D. Abitha |
description | An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency. |
doi_str_mv | 10.1007/s11277-023-10603-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844169704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844169704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKt_wFPAc3Ty6GZzLLU-oK1QFLyFfcyuW-umJqnSf2-0gjdPc_m-meEj5JzDJQfQV4FzoTUDIRmHDCSDAzLgIy1YLtXzIRmAEYZlgotjchLCCiBpRgzIctzTadN0VYd9pHOML652a9fuaOM8vcaIVez6ls6LdWLcNtCFqzHQrqcT1_Zd7D6QLou6c3SB8dP513BKjppiHfDsdw7J0830cXLHZg-395PxjFWSm8jyUumyKhtjCtmYEopRnWdaCQTBOaAxOJIaTVFr0yjUiue5zHmVQwHpezRySC72ezfevW8xRLtyW9-nk1bkSvHMaFCJEnuq8i4Ej43d-O6t8DvLwX63s_t2NrWzP-0sJEnupZDgvkX_t_of6wtw0HDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844169704</pqid></control><display><type>article</type><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><source>Springer Link</source><creator>Kumari, D. Abitha</creator><creatorcontrib>Kumari, D. Abitha</creatorcontrib><description>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-023-10603-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cognitive radio ; Communications Engineering ; Computer Communication Networks ; Engineering ; Network latency ; Networks ; Neural networks ; Nodes ; Optimization ; Signal,Image and Speech Processing ; Soft computing</subject><ispartof>Wireless personal communications, 2023-08, Vol.131 (4), p.3089-3099</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</citedby><cites>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</cites><orcidid>0000-0001-6898-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kumari, D. Abitha</creatorcontrib><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</description><subject>Algorithms</subject><subject>Cognitive radio</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Network latency</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Soft computing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKt_wFPAc3Ty6GZzLLU-oK1QFLyFfcyuW-umJqnSf2-0gjdPc_m-meEj5JzDJQfQV4FzoTUDIRmHDCSDAzLgIy1YLtXzIRmAEYZlgotjchLCCiBpRgzIctzTadN0VYd9pHOML652a9fuaOM8vcaIVez6ls6LdWLcNtCFqzHQrqcT1_Zd7D6QLou6c3SB8dP513BKjppiHfDsdw7J0830cXLHZg-395PxjFWSm8jyUumyKhtjCtmYEopRnWdaCQTBOaAxOJIaTVFr0yjUiue5zHmVQwHpezRySC72ezfevW8xRLtyW9-nk1bkSvHMaFCJEnuq8i4Ej43d-O6t8DvLwX63s_t2NrWzP-0sJEnupZDgvkX_t_of6wtw0HDA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kumari, D. Abitha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6898-3275</orcidid></search><sort><creationdate>20230801</creationdate><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><author>Kumari, D. Abitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cognitive radio</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Network latency</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Soft computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, D. Abitha</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, D. Abitha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>131</volume><issue>4</issue><spage>3089</spage><epage>3099</epage><pages>3089-3099</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-023-10603-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6898-3275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2023-08, Vol.131 (4), p.3089-3099 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2844169704 |
source | Springer Link |
subjects | Algorithms Cognitive radio Communications Engineering Computer Communication Networks Engineering Network latency Networks Neural networks Nodes Optimization Signal,Image and Speech Processing Soft computing |
title | An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Methodology%20for%20Detecting%20Malicious%20Nodes%20in%20Cognitive%20Radio%20Networks&rft.jtitle=Wireless%20personal%20communications&rft.au=Kumari,%20D.%20Abitha&rft.date=2023-08-01&rft.volume=131&rft.issue=4&rft.spage=3089&rft.epage=3099&rft.pages=3089-3099&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-023-10603-0&rft_dat=%3Cproquest_cross%3E2844169704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844169704&rft_id=info:pmid/&rfr_iscdi=true |