Loading…

An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks

An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individua...

Full description

Saved in:
Bibliographic Details
Published in:Wireless personal communications 2023-08, Vol.131 (4), p.3089-3099
Main Author: Kumari, D. Abitha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93
cites cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93
container_end_page 3099
container_issue 4
container_start_page 3089
container_title Wireless personal communications
container_volume 131
creator Kumari, D. Abitha
description An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.
doi_str_mv 10.1007/s11277-023-10603-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844169704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844169704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKt_wFPAc3Ty6GZzLLU-oK1QFLyFfcyuW-umJqnSf2-0gjdPc_m-meEj5JzDJQfQV4FzoTUDIRmHDCSDAzLgIy1YLtXzIRmAEYZlgotjchLCCiBpRgzIctzTadN0VYd9pHOML652a9fuaOM8vcaIVez6ls6LdWLcNtCFqzHQrqcT1_Zd7D6QLou6c3SB8dP513BKjppiHfDsdw7J0830cXLHZg-395PxjFWSm8jyUumyKhtjCtmYEopRnWdaCQTBOaAxOJIaTVFr0yjUiue5zHmVQwHpezRySC72ezfevW8xRLtyW9-nk1bkSvHMaFCJEnuq8i4Ej43d-O6t8DvLwX63s_t2NrWzP-0sJEnupZDgvkX_t_of6wtw0HDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844169704</pqid></control><display><type>article</type><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><source>Springer Link</source><creator>Kumari, D. Abitha</creator><creatorcontrib>Kumari, D. Abitha</creatorcontrib><description>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-023-10603-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cognitive radio ; Communications Engineering ; Computer Communication Networks ; Engineering ; Network latency ; Networks ; Neural networks ; Nodes ; Optimization ; Signal,Image and Speech Processing ; Soft computing</subject><ispartof>Wireless personal communications, 2023-08, Vol.131 (4), p.3089-3099</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</citedby><cites>FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</cites><orcidid>0000-0001-6898-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kumari, D. Abitha</creatorcontrib><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</description><subject>Algorithms</subject><subject>Cognitive radio</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Network latency</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Soft computing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKt_wFPAc3Ty6GZzLLU-oK1QFLyFfcyuW-umJqnSf2-0gjdPc_m-meEj5JzDJQfQV4FzoTUDIRmHDCSDAzLgIy1YLtXzIRmAEYZlgotjchLCCiBpRgzIctzTadN0VYd9pHOML652a9fuaOM8vcaIVez6ls6LdWLcNtCFqzHQrqcT1_Zd7D6QLou6c3SB8dP513BKjppiHfDsdw7J0830cXLHZg-395PxjFWSm8jyUumyKhtjCtmYEopRnWdaCQTBOaAxOJIaTVFr0yjUiue5zHmVQwHpezRySC72ezfevW8xRLtyW9-nk1bkSvHMaFCJEnuq8i4Ej43d-O6t8DvLwX63s_t2NrWzP-0sJEnupZDgvkX_t_of6wtw0HDA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kumari, D. Abitha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6898-3275</orcidid></search><sort><creationdate>20230801</creationdate><title>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</title><author>Kumari, D. Abitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cognitive radio</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Network latency</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Soft computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, D. Abitha</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, D. Abitha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>131</volume><issue>4</issue><spage>3089</spage><epage>3099</epage><pages>3089-3099</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>An efficient malicious node detection system in CR networks is proposed in this paper. This proposed system contains features extraction process and optimization algorithm with soft computing framework. This proposed methodology stated in this paper initially abstracts the features of each individual node in CR network and these individual features are now getting optimized using feed forward radial neural network algorithm, which differentiates each individual node in CR network into either normal or malicious/faulty. This paper analyzes the performance of this proposed work with respect to malicious node detection rate, throughput and latency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-023-10603-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6898-3275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2023-08, Vol.131 (4), p.3089-3099
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2844169704
source Springer Link
subjects Algorithms
Cognitive radio
Communications Engineering
Computer Communication Networks
Engineering
Network latency
Networks
Neural networks
Nodes
Optimization
Signal,Image and Speech Processing
Soft computing
title An Efficient Methodology for Detecting Malicious Nodes in Cognitive Radio Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Methodology%20for%20Detecting%20Malicious%20Nodes%20in%20Cognitive%20Radio%20Networks&rft.jtitle=Wireless%20personal%20communications&rft.au=Kumari,%20D.%20Abitha&rft.date=2023-08-01&rft.volume=131&rft.issue=4&rft.spage=3089&rft.epage=3099&rft.pages=3089-3099&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-023-10603-0&rft_dat=%3Cproquest_cross%3E2844169704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8b47bcbf99a3f9b0a5d86742e02110e99e537e9ad79f4e74188381c80a0001e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844169704&rft_id=info:pmid/&rfr_iscdi=true