Loading…

The Study of Surface Sliding Discharge Interacting with an Oblique Shock Wave

A distributed surface sliding discharge with a duration of 500 ns in supersonic air flows with an oblique shock wave had been experimentally studied. The Mach numbers of the flows were 1.18–1.68, the density was 0.02–0.45 kg/m 3 . The discharge was initiated in a single pulse mode. With a voltage of...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics reports 2023-06, Vol.49 (6), p.795-801
Main Authors: Mursenkova, I. V., Ivanov, I. E., Liao, Yu, Ziganshin, A. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A distributed surface sliding discharge with a duration of 500 ns in supersonic air flows with an oblique shock wave had been experimentally studied. The Mach numbers of the flows were 1.18–1.68, the density was 0.02–0.45 kg/m 3 . The discharge was initiated in a single pulse mode. With a voltage of 25 kV, the discharge current was about 1 kA. It is shown that the discharge current, as well as the spatio-temporal characteristics of the radiation depend on the parameters of the local rarefaction zone in the boundary layer. In a stationary flow with an oblique shock wave, the discharge is generated as a single channel. Analysis of high-speed shadowgraphy of the flow after discharge showed that a single discharge channel generates a semi-cylindrical shock wave. The purpose of the work was to study the motion of the shock wave generated from the discharge under different conditions of supersonic flow. Comparison of the experimental dynamic of the shock wave with the results of numerical modelling of the flow based on the non-stationary Navier–Stokes equations showed that the value of the thermal energy released in the discharge channel is 0.15–0.36 J.
ISSN:1063-780X
1562-6938
DOI:10.1134/S1063780X22601468