Loading…

Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space

In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.

Saved in:
Bibliographic Details
Published in:Communications in Mathematics and Applications 2023-01, Vol.14 (1), p.1-7
Main Authors: Dwivedi, Snehlata, Mishra, Urmila, Dubey, A.K., Pandey, M.D.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue 1
container_start_page 1
container_title Communications in Mathematics and Applications
container_volume 14
creator Dwivedi, Snehlata
Mishra, Urmila
Dubey, A.K.
Pandey, M.D.
description In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.
doi_str_mv 10.26713/cma.v14i1.1828
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844203465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844203465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-3e521a23002b65b070a5a5d87b86ccc835fd5b725994a8589dfa67c4ecac9bdb3</originalsourceid><addsrcrecordid>eNotkMFLwzAUh4MoOObOXgNeNli3NGna9KjDqaAobN4K5TVNXcaadEkr6l9v7Ty9B-_j_X58CF2HZEHjJGRLWcPiM4x0uAgFFWdoRNKEByImyfmwxwFPCb9EE-_3hBCaxlHC0hE6bmyt8Fp_qRK_WW1avN0p61TtcWUdzqbTDA7NDuZZoVqY_8yyWbCypnUgW20NfoGm0eYDd6ZUDm903R1gOKw7MxAea4PvwIDc4U0DUl2hiwoOXk3-5xi9r--3q8fg-fXhaXX7HMiQszZgitMQKOu7FjEvSEKAAy9FUohYSikYr0peJJSnaQSCi7SsIE5kpCTItCgLNkY3p7-Ns8dO-Tbf286ZPjKnIoooYVHMe2p5oqSz3jtV5Y3TNbjvPCT5oDbv1eaD2vxPLfsFBxJtNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844203465</pqid></control><display><type>article</type><title>Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space</title><source>Publicly Available Content (ProQuest)</source><creator>Dwivedi, Snehlata ; Mishra, Urmila ; Dubey, A.K. ; Pandey, M.D.</creator><creatorcontrib>Dwivedi, Snehlata ; Mishra, Urmila ; Dubey, A.K. ; Pandey, M.D.</creatorcontrib><description>In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v14i1.1828</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Applied mathematics ; Banach spaces ; Fixed points (mathematics) ; Mapping ; Simulation ; Theorems</subject><ispartof>Communications in Mathematics and Applications, 2023-01, Vol.14 (1), p.1-7</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3833-5247 ; 0000-0001-5831-3817 ; 0000-0003-4353-1269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2844203465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dwivedi, Snehlata</creatorcontrib><creatorcontrib>Mishra, Urmila</creatorcontrib><creatorcontrib>Dubey, A.K.</creatorcontrib><creatorcontrib>Pandey, M.D.</creatorcontrib><title>Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space</title><title>Communications in Mathematics and Applications</title><description>In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.</description><subject>Applied mathematics</subject><subject>Banach spaces</subject><subject>Fixed points (mathematics)</subject><subject>Mapping</subject><subject>Simulation</subject><subject>Theorems</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkMFLwzAUh4MoOObOXgNeNli3NGna9KjDqaAobN4K5TVNXcaadEkr6l9v7Ty9B-_j_X58CF2HZEHjJGRLWcPiM4x0uAgFFWdoRNKEByImyfmwxwFPCb9EE-_3hBCaxlHC0hE6bmyt8Fp_qRK_WW1avN0p61TtcWUdzqbTDA7NDuZZoVqY_8yyWbCypnUgW20NfoGm0eYDd6ZUDm903R1gOKw7MxAea4PvwIDc4U0DUl2hiwoOXk3-5xi9r--3q8fg-fXhaXX7HMiQszZgitMQKOu7FjEvSEKAAy9FUohYSikYr0peJJSnaQSCi7SsIE5kpCTItCgLNkY3p7-Ns8dO-Tbf286ZPjKnIoooYVHMe2p5oqSz3jtV5Y3TNbjvPCT5oDbv1eaD2vxPLfsFBxJtNg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Dwivedi, Snehlata</creator><creator>Mishra, Urmila</creator><creator>Dubey, A.K.</creator><creator>Pandey, M.D.</creator><general>RGN Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3833-5247</orcidid><orcidid>https://orcid.org/0000-0001-5831-3817</orcidid><orcidid>https://orcid.org/0000-0003-4353-1269</orcidid></search><sort><creationdate>20230101</creationdate><title>Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space</title><author>Dwivedi, Snehlata ; Mishra, Urmila ; Dubey, A.K. ; Pandey, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-3e521a23002b65b070a5a5d87b86ccc835fd5b725994a8589dfa67c4ecac9bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Banach spaces</topic><topic>Fixed points (mathematics)</topic><topic>Mapping</topic><topic>Simulation</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Snehlata</creatorcontrib><creatorcontrib>Mishra, Urmila</creatorcontrib><creatorcontrib>Dubey, A.K.</creatorcontrib><creatorcontrib>Pandey, M.D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, Snehlata</au><au>Mishra, Urmila</au><au>Dubey, A.K.</au><au>Pandey, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>In this paper, we prove some fixed point results in the setting of a Banach space via a cyclic \((\alpha ,\beta ,z)\)-admissible mapping imbedded in simulation function. Our results extend and generalize some well known results in the existing literature.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v14i1.1828</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3833-5247</orcidid><orcidid>https://orcid.org/0000-0001-5831-3817</orcidid><orcidid>https://orcid.org/0000-0003-4353-1269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-5905
ispartof Communications in Mathematics and Applications, 2023-01, Vol.14 (1), p.1-7
issn 0976-5905
0975-8607
language eng
recordid cdi_proquest_journals_2844203465
source Publicly Available Content (ProQuest)
subjects Applied mathematics
Banach spaces
Fixed points (mathematics)
Mapping
Simulation
Theorems
title Some Fixed Point Theorems for \((\alpha,\beta,z)\)-Contraction Mapping under Simulation Functions in Banach Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Fixed%20Point%20Theorems%20for%20%5C((%5Calpha,%5Cbeta,z)%5C)-Contraction%20Mapping%20under%20Simulation%20Functions%20in%20Banach%20Space&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Dwivedi,%20Snehlata&rft.date=2023-01-01&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v14i1.1828&rft_dat=%3Cproquest_cross%3E2844203465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c153t-3e521a23002b65b070a5a5d87b86ccc835fd5b725994a8589dfa67c4ecac9bdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844203465&rft_id=info:pmid/&rfr_iscdi=true