Loading…

Residual Stress Distributions in Dissimilar Titanium Alloy Diffusion Bonds Produced From Powder Using Field-Assisted Sintering Technology (FAST-DB)

The conventional approach when engineering components manufactured from titanium is to design the thermomechanical processing to develop an optimal microstructure in a single alloy. However, this conventional approach can lead to unnecessary over-engineering of components, particularly when only a s...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-09, Vol.54 (9), p.3578-3593
Main Authors: Levano Blanch, Oliver, Pope, Jacob, Violatos, Ioannis, Rahimi, Salaheddin, Jackson, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conventional approach when engineering components manufactured from titanium is to design the thermomechanical processing to develop an optimal microstructure in a single alloy. However, this conventional approach can lead to unnecessary over-engineering of components, particularly when only a specific subcomponent region is under demanding service stresses and environments. One approach being developed to join multiple alloys in a single component and enhance engineering performance and efficiency is FAST-DB—whereby multiple alloys in powder form are diffusion bonded (DB) using field-assisted sintering technology (FAST). But the joining of multiple alloys using conventional welding and joining techniques can generate high residual stress in the bond region that can affect the mechanical performance of the components. In this study, the residual stress distribution across dissimilar titanium alloy diffusion bonds, processed from powder using FAST, were measured using X-Ray diffraction and the Contour method. The measurements show low residual stress in the bulk material processed with FAST as well as in the diffusion bond region. In addition, FAST-DB preforms subsequently hot forged into different near-net shapes were also analyzed to understand how the residual stress in the bond region is affected by a subsequent processing. Overall, no sharp transitions in residual stress was observed between the dissimilar alloys. This study reinforces confidence in the solid-state FAST process for manufacturing next generation components from multiple titanium alloy powders.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-023-07115-8