Loading…
Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach
The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change r...
Saved in:
Published in: | Journal of land use science 2022-01, Vol.17 (1), p.26-46 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153 |
container_end_page | 46 |
container_issue | 1 |
container_start_page | 26 |
container_title | Journal of land use science |
container_volume | 17 |
creator | Wagner, Melissa Wentz, Elizabeth A. Stuhlmacher, Michelle |
description | The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies. |
doi_str_mv | 10.1080/1747423X.2021.2020918 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2844447227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f20adcc1bc3148c49f73bb82af18b765</doaj_id><sourcerecordid>2844447227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</originalsourceid><addsrcrecordid>eNp9UdtKxDAQLaLg9ROEgM-ruTapTy7iDQQRFcSXMEkbzdJtapKi-_e2rvroPGSGmXMOJ5yiOCT4mGCFT4jkklP2fEwxJdODK6I2ip1pP-OUq82_mT1vF7spLTDmZSXxTvFyP0CXvVv57hUF36Ie2iVqPnvokg8d8h16CEN-ayBlNE8ekIthiSjGGOUwdiJO0RzVkMfL8E2Bvo8B7Nt-seWgTc3BT98rni4vHs-vZ7d3Vzfn89uZ5bLKMwrCsapW3CnHrTQGG8o5oby2ojaikaoESQyrBFYlH31Lx5wUZS3Kxhki2F5xs9atAyx0H_0S4koH8Pp7EeKrhpi9bRvtKIbaWmIsI1xZXjnJjFEUHFFGlpPW0Vpr_ML70KSsF2GI3WhfU8XHkpTKf1FScIqFVNWIEmuUjSGl2Lg_bwTrKTj9G5yegtM_wY28szXPdy7EJXyE2NY6w6oN0UXorE-a_S_xBbmenB0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754205789</pqid></control><display><type>article</type><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><source>Taylor & Francis Open Access Journals</source><creator>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</creator><creatorcontrib>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</creatorcontrib><description>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</description><identifier>ISSN: 1747-423X</identifier><identifier>EISSN: 1747-4248</identifier><identifier>DOI: 10.1080/1747423X.2021.2020918</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>accuracy assessment ; Agricultural land ; Classification ; Data fusion ; Data integration ; Deforestation ; Information processing ; Land cover ; land cover change ; Land management ; Land use ; land use change ; oil palm ; Radar ; Radar data ; Radar imaging ; remote sensing ; Sustainability management ; Vegetable oils</subject><ispartof>Journal of land use science, 2022-01, Vol.17 (1), p.26-46</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</citedby><cites>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1747423X.2021.2020918$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1747423X.2021.2020918$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Wagner, Melissa</creatorcontrib><creatorcontrib>Wentz, Elizabeth A.</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle</creatorcontrib><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><title>Journal of land use science</title><description>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</description><subject>accuracy assessment</subject><subject>Agricultural land</subject><subject>Classification</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Deforestation</subject><subject>Information processing</subject><subject>Land cover</subject><subject>land cover change</subject><subject>Land management</subject><subject>Land use</subject><subject>land use change</subject><subject>oil palm</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>remote sensing</subject><subject>Sustainability management</subject><subject>Vegetable oils</subject><issn>1747-423X</issn><issn>1747-4248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UdtKxDAQLaLg9ROEgM-ruTapTy7iDQQRFcSXMEkbzdJtapKi-_e2rvroPGSGmXMOJ5yiOCT4mGCFT4jkklP2fEwxJdODK6I2ip1pP-OUq82_mT1vF7spLTDmZSXxTvFyP0CXvVv57hUF36Ie2iVqPnvokg8d8h16CEN-ayBlNE8ekIthiSjGGOUwdiJO0RzVkMfL8E2Bvo8B7Nt-seWgTc3BT98rni4vHs-vZ7d3Vzfn89uZ5bLKMwrCsapW3CnHrTQGG8o5oby2ojaikaoESQyrBFYlH31Lx5wUZS3Kxhki2F5xs9atAyx0H_0S4koH8Pp7EeKrhpi9bRvtKIbaWmIsI1xZXjnJjFEUHFFGlpPW0Vpr_ML70KSsF2GI3WhfU8XHkpTKf1FScIqFVNWIEmuUjSGl2Lg_bwTrKTj9G5yegtM_wY28szXPdy7EJXyE2NY6w6oN0UXorE-a_S_xBbmenB0</recordid><startdate>20220102</startdate><enddate>20220102</enddate><creator>Wagner, Melissa</creator><creator>Wentz, Elizabeth A.</creator><creator>Stuhlmacher, Michelle</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20220102</creationdate><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><author>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>accuracy assessment</topic><topic>Agricultural land</topic><topic>Classification</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Deforestation</topic><topic>Information processing</topic><topic>Land cover</topic><topic>land cover change</topic><topic>Land management</topic><topic>Land use</topic><topic>land use change</topic><topic>oil palm</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>remote sensing</topic><topic>Sustainability management</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Melissa</creatorcontrib><creatorcontrib>Wentz, Elizabeth A.</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of land use science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Melissa</au><au>Wentz, Elizabeth A.</au><au>Stuhlmacher, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</atitle><jtitle>Journal of land use science</jtitle><date>2022-01-02</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>26</spage><epage>46</epage><pages>26-46</pages><issn>1747-423X</issn><eissn>1747-4248</eissn><abstract>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/1747423X.2021.2020918</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-423X |
ispartof | Journal of land use science, 2022-01, Vol.17 (1), p.26-46 |
issn | 1747-423X 1747-4248 |
language | eng |
recordid | cdi_proquest_journals_2844447227 |
source | Taylor & Francis Open Access Journals |
subjects | accuracy assessment Agricultural land Classification Data fusion Data integration Deforestation Information processing Land cover land cover change Land management Land use land use change oil palm Radar Radar data Radar imaging remote sensing Sustainability management Vegetable oils |
title | Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20oil%20palm%20expansion%20in%20Southeast%20Asia%20from%202000%20to%202015:%20A%20data%20fusion%20approach&rft.jtitle=Journal%20of%20land%20use%20science&rft.au=Wagner,%20Melissa&rft.date=2022-01-02&rft.volume=17&rft.issue=1&rft.spage=26&rft.epage=46&rft.pages=26-46&rft.issn=1747-423X&rft.eissn=1747-4248&rft_id=info:doi/10.1080/1747423X.2021.2020918&rft_dat=%3Cproquest_doaj_%3E2844447227%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754205789&rft_id=info:pmid/&rfr_iscdi=true |