Loading…

Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach

The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of land use science 2022-01, Vol.17 (1), p.26-46
Main Authors: Wagner, Melissa, Wentz, Elizabeth A., Stuhlmacher, Michelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153
cites cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153
container_end_page 46
container_issue 1
container_start_page 26
container_title Journal of land use science
container_volume 17
creator Wagner, Melissa
Wentz, Elizabeth A.
Stuhlmacher, Michelle
description The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.
doi_str_mv 10.1080/1747423X.2021.2020918
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2844447227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f20adcc1bc3148c49f73bb82af18b765</doaj_id><sourcerecordid>2844447227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</originalsourceid><addsrcrecordid>eNp9UdtKxDAQLaLg9ROEgM-ruTapTy7iDQQRFcSXMEkbzdJtapKi-_e2rvroPGSGmXMOJ5yiOCT4mGCFT4jkklP2fEwxJdODK6I2ip1pP-OUq82_mT1vF7spLTDmZSXxTvFyP0CXvVv57hUF36Ie2iVqPnvokg8d8h16CEN-ayBlNE8ekIthiSjGGOUwdiJO0RzVkMfL8E2Bvo8B7Nt-seWgTc3BT98rni4vHs-vZ7d3Vzfn89uZ5bLKMwrCsapW3CnHrTQGG8o5oby2ojaikaoESQyrBFYlH31Lx5wUZS3Kxhki2F5xs9atAyx0H_0S4koH8Pp7EeKrhpi9bRvtKIbaWmIsI1xZXjnJjFEUHFFGlpPW0Vpr_ML70KSsF2GI3WhfU8XHkpTKf1FScIqFVNWIEmuUjSGl2Lg_bwTrKTj9G5yegtM_wY28szXPdy7EJXyE2NY6w6oN0UXorE-a_S_xBbmenB0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754205789</pqid></control><display><type>article</type><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><source>Taylor &amp; Francis Open Access Journals</source><creator>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</creator><creatorcontrib>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</creatorcontrib><description>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</description><identifier>ISSN: 1747-423X</identifier><identifier>EISSN: 1747-4248</identifier><identifier>DOI: 10.1080/1747423X.2021.2020918</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>accuracy assessment ; Agricultural land ; Classification ; Data fusion ; Data integration ; Deforestation ; Information processing ; Land cover ; land cover change ; Land management ; Land use ; land use change ; oil palm ; Radar ; Radar data ; Radar imaging ; remote sensing ; Sustainability management ; Vegetable oils</subject><ispartof>Journal of land use science, 2022-01, Vol.17 (1), p.26-46</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</citedby><cites>FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1747423X.2021.2020918$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1747423X.2021.2020918$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Wagner, Melissa</creatorcontrib><creatorcontrib>Wentz, Elizabeth A.</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle</creatorcontrib><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><title>Journal of land use science</title><description>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</description><subject>accuracy assessment</subject><subject>Agricultural land</subject><subject>Classification</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Deforestation</subject><subject>Information processing</subject><subject>Land cover</subject><subject>land cover change</subject><subject>Land management</subject><subject>Land use</subject><subject>land use change</subject><subject>oil palm</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>remote sensing</subject><subject>Sustainability management</subject><subject>Vegetable oils</subject><issn>1747-423X</issn><issn>1747-4248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UdtKxDAQLaLg9ROEgM-ruTapTy7iDQQRFcSXMEkbzdJtapKi-_e2rvroPGSGmXMOJ5yiOCT4mGCFT4jkklP2fEwxJdODK6I2ip1pP-OUq82_mT1vF7spLTDmZSXxTvFyP0CXvVv57hUF36Ie2iVqPnvokg8d8h16CEN-ayBlNE8ekIthiSjGGOUwdiJO0RzVkMfL8E2Bvo8B7Nt-seWgTc3BT98rni4vHs-vZ7d3Vzfn89uZ5bLKMwrCsapW3CnHrTQGG8o5oby2ojaikaoESQyrBFYlH31Lx5wUZS3Kxhki2F5xs9atAyx0H_0S4koH8Pp7EeKrhpi9bRvtKIbaWmIsI1xZXjnJjFEUHFFGlpPW0Vpr_ML70KSsF2GI3WhfU8XHkpTKf1FScIqFVNWIEmuUjSGl2Lg_bwTrKTj9G5yegtM_wY28szXPdy7EJXyE2NY6w6oN0UXorE-a_S_xBbmenB0</recordid><startdate>20220102</startdate><enddate>20220102</enddate><creator>Wagner, Melissa</creator><creator>Wentz, Elizabeth A.</creator><creator>Stuhlmacher, Michelle</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20220102</creationdate><title>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</title><author>Wagner, Melissa ; Wentz, Elizabeth A. ; Stuhlmacher, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>accuracy assessment</topic><topic>Agricultural land</topic><topic>Classification</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Deforestation</topic><topic>Information processing</topic><topic>Land cover</topic><topic>land cover change</topic><topic>Land management</topic><topic>Land use</topic><topic>land use change</topic><topic>oil palm</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>remote sensing</topic><topic>Sustainability management</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Melissa</creatorcontrib><creatorcontrib>Wentz, Elizabeth A.</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of land use science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Melissa</au><au>Wentz, Elizabeth A.</au><au>Stuhlmacher, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach</atitle><jtitle>Journal of land use science</jtitle><date>2022-01-02</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>26</spage><epage>46</epage><pages>26-46</pages><issn>1747-423X</issn><eissn>1747-4248</eissn><abstract>The fusion of optical imagery with radar data can provide more accurate land cover change analysis of deforestation and tree-based agriculture. Radar data is limited temporally with most geographic areas not covered prior to 2007. This paper presents a new methodology to classify land cover change related to oil palm expansion that takes historic data limitations into account. Our approach utilizes Hansen's Global Forest Cover data, optical imagery, and texture information, to extract land cover information in Sumatra and Western Malaysia, where historical data is absent. Our method demonstrates how to accurately classify oil palm without radar data with overall accuracies for optical only experiments within 4.4% of optical plus radar classifications. Our results show agricultural land use was the primary driver of land cover change with the largest increase due to oil palm expansion (6.1%). Better estimations of oil palm expansion could be used in sustainable land management policies.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/1747423X.2021.2020918</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1747-423X
ispartof Journal of land use science, 2022-01, Vol.17 (1), p.26-46
issn 1747-423X
1747-4248
language eng
recordid cdi_proquest_journals_2844447227
source Taylor & Francis Open Access Journals
subjects accuracy assessment
Agricultural land
Classification
Data fusion
Data integration
Deforestation
Information processing
Land cover
land cover change
Land management
Land use
land use change
oil palm
Radar
Radar data
Radar imaging
remote sensing
Sustainability management
Vegetable oils
title Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20oil%20palm%20expansion%20in%20Southeast%20Asia%20from%202000%20to%202015:%20A%20data%20fusion%20approach&rft.jtitle=Journal%20of%20land%20use%20science&rft.au=Wagner,%20Melissa&rft.date=2022-01-02&rft.volume=17&rft.issue=1&rft.spage=26&rft.epage=46&rft.pages=26-46&rft.issn=1747-423X&rft.eissn=1747-4248&rft_id=info:doi/10.1080/1747423X.2021.2020918&rft_dat=%3Cproquest_doaj_%3E2844447227%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-2a5f39d84f8f4c7bb0b244124dc5db5e786a71b39508640467f3f756d56efb153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754205789&rft_id=info:pmid/&rfr_iscdi=true