Loading…
Giant Spatial Redistribution of Electrons in a Wide Quantum Well Induced by Quantizing Magnetic Field
In samples of field-effect transistors based on GaAs/AlGaAs heterostructures with an electron system in a single 50-nm-wide GaAs quantum well, a transition stimulated by a quantizing magnetic field has been detected from a bilayer state of the system in zero magnetic field to a single-layer state wh...
Saved in:
Published in: | JETP letters 2023-06, Vol.117 (12), p.938-944 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In samples of field-effect transistors based on GaAs/AlGaAs heterostructures with an electron system in a single 50-nm-wide GaAs quantum well, a transition stimulated by a quantizing magnetic field has been detected from a bilayer state of the system in zero magnetic field to a single-layer state when only the lowest Landau level is filled. In contrast to the results for the 60-nm-wide quantum well obtained in [S. I. Dorozhkin, A. A. Kapustin, I. V. Fedorov, V. Umansky, and J. H. Smet, Phys. Rev. V
102
, 235307 (2020)], the single-layer state is observed not only in incompressible quantum Hall effect states of the electron system at filling factors of 1 and 2, but also in compressible states between these filling factors. The spatial location of the single-layer system in the quantum well has been established; it appears to be independent of the electron distribution over the layers in a low magnetic field. A possible qualitative explanation for this observation has been proposed. The detected transition is supposedly due to the negative compressibility of two-dimensional electron systems caused by exchange-correlation contributions to the electron−electron interaction. |
---|---|
ISSN: | 0021-3640 1090-6487 |
DOI: | 10.1134/S0021364023601367 |