Loading…
Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences
In this article, we are concerned with a diffusive SVEIR epidemic model with nonlinear incidences. We first obtain the well-posedness of solutions for the model. Then, the basic reproduction number R 0 and the local basic reproduction number R ¯ 0 ( x ) are calculated, which are defined as the spect...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Physik 2023-10, Vol.74 (5), Article 173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-e4e612dea1d13e4f16eb32ac1c0a86c933af656a2271be0faed104dd9680ad863 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 74 |
creator | Zhou, Pan Wang, Jianpeng Teng, Zhidong Wang, Kai |
description | In this article, we are concerned with a diffusive SVEIR epidemic model with nonlinear incidences. We first obtain the well-posedness of solutions for the model. Then, the basic reproduction number
R
0
and the local basic reproduction number
R
¯
0
(
x
)
are calculated, which are defined as the spectral radii of the next-generation operators. The relationship between
R
0
and
R
¯
0
(
x
)
as well as the asymptotic properties of
R
0
when the diffusive rates tend to infinity or zero is investigated by introducing two compact linear operators
L
1
and
L
2
. Using the theory of monotone dynamical systems and the persistence theory of dynamical systems, we show that the disease-free equilibrium is globally asymptotically stable when
R
0
<
1
, while the disease is uniformly persistent when
R
0
>
1
. Furthermore, in the spatially homogeneous case, by using the Lyapunov functions method and LaSalle’s invariance principle, we completely obtain that the disease-free equilibrium is globally asymptotically stable if
R
0
≤
1
, and the endemic equilibrium is globally asymptotically stable if
R
0
>
1
and an additional condition is satisfied. |
doi_str_mv | 10.1007/s00033-023-02057-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844756495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844756495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e4e612dea1d13e4f16eb32ac1c0a86c933af656a2271be0faed104dd9680ad863</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkY7O7R6lVCwXx8xrSzURTttmatMr-e6MVvHkY5jDPO8w8hJwyOGcA1UUCACEK4N8FZVUMe2TEJIeiAdHskxGAlAXnVXlIjlJaZrxiIEbk_moIZuVb01ETTDckn6jrIzXUeue2yX8gfXyZzh4orr3FTNJVb7Gjn37zRkMfOh_QROpDm8ehxXRMDpzpEp789jF5vp4-TW6L-d3NbHI5L1rB5KZAiYpxi4ZZJlA6pnAhuGlZC6ZWbSOEcapUJt_MFgjOoGUgrW1UDcbWSozJ2W7vOvbvW0wbvey3Mf-QNK-lrEolmzJTfEe1sU8potPr6FcmDpqB_land-p0Vqd_1Okhh8QulDIcXjH-rf4n9QXyt3I6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844756495</pqid></control><display><type>article</type><title>Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences</title><source>Springer Nature</source><creator>Zhou, Pan ; Wang, Jianpeng ; Teng, Zhidong ; Wang, Kai</creator><creatorcontrib>Zhou, Pan ; Wang, Jianpeng ; Teng, Zhidong ; Wang, Kai</creatorcontrib><description>In this article, we are concerned with a diffusive SVEIR epidemic model with nonlinear incidences. We first obtain the well-posedness of solutions for the model. Then, the basic reproduction number
R
0
and the local basic reproduction number
R
¯
0
(
x
)
are calculated, which are defined as the spectral radii of the next-generation operators. The relationship between
R
0
and
R
¯
0
(
x
)
as well as the asymptotic properties of
R
0
when the diffusive rates tend to infinity or zero is investigated by introducing two compact linear operators
L
1
and
L
2
. Using the theory of monotone dynamical systems and the persistence theory of dynamical systems, we show that the disease-free equilibrium is globally asymptotically stable when
R
0
<
1
, while the disease is uniformly persistent when
R
0
>
1
. Furthermore, in the spatially homogeneous case, by using the Lyapunov functions method and LaSalle’s invariance principle, we completely obtain that the disease-free equilibrium is globally asymptotically stable if
R
0
≤
1
, and the endemic equilibrium is globally asymptotically stable if
R
0
>
1
and an additional condition is satisfied.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-02057-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic properties ; Dynamical systems ; Engineering ; Epidemics ; Equilibrium ; Liapunov functions ; Linear operators ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-10, Vol.74 (5), Article 173</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-e4e612dea1d13e4f16eb32ac1c0a86c933af656a2271be0faed104dd9680ad863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Teng, Zhidong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><title>Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this article, we are concerned with a diffusive SVEIR epidemic model with nonlinear incidences. We first obtain the well-posedness of solutions for the model. Then, the basic reproduction number
R
0
and the local basic reproduction number
R
¯
0
(
x
)
are calculated, which are defined as the spectral radii of the next-generation operators. The relationship between
R
0
and
R
¯
0
(
x
)
as well as the asymptotic properties of
R
0
when the diffusive rates tend to infinity or zero is investigated by introducing two compact linear operators
L
1
and
L
2
. Using the theory of monotone dynamical systems and the persistence theory of dynamical systems, we show that the disease-free equilibrium is globally asymptotically stable when
R
0
<
1
, while the disease is uniformly persistent when
R
0
>
1
. Furthermore, in the spatially homogeneous case, by using the Lyapunov functions method and LaSalle’s invariance principle, we completely obtain that the disease-free equilibrium is globally asymptotically stable if
R
0
≤
1
, and the endemic equilibrium is globally asymptotically stable if
R
0
>
1
and an additional condition is satisfied.</description><subject>Asymptotic properties</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Equilibrium</subject><subject>Liapunov functions</subject><subject>Linear operators</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkY7O7R6lVCwXx8xrSzURTttmatMr-e6MVvHkY5jDPO8w8hJwyOGcA1UUCACEK4N8FZVUMe2TEJIeiAdHskxGAlAXnVXlIjlJaZrxiIEbk_moIZuVb01ETTDckn6jrIzXUeue2yX8gfXyZzh4orr3FTNJVb7Gjn37zRkMfOh_QROpDm8ehxXRMDpzpEp789jF5vp4-TW6L-d3NbHI5L1rB5KZAiYpxi4ZZJlA6pnAhuGlZC6ZWbSOEcapUJt_MFgjOoGUgrW1UDcbWSozJ2W7vOvbvW0wbvey3Mf-QNK-lrEolmzJTfEe1sU8potPr6FcmDpqB_land-p0Vqd_1Okhh8QulDIcXjH-rf4n9QXyt3I6</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhou, Pan</creator><creator>Wang, Jianpeng</creator><creator>Teng, Zhidong</creator><creator>Wang, Kai</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences</title><author>Zhou, Pan ; Wang, Jianpeng ; Teng, Zhidong ; Wang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e4e612dea1d13e4f16eb32ac1c0a86c933af656a2271be0faed104dd9680ad863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Equilibrium</topic><topic>Liapunov functions</topic><topic>Linear operators</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Wang, Jianpeng</creatorcontrib><creatorcontrib>Teng, Zhidong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Pan</au><au>Wang, Jianpeng</au><au>Teng, Zhidong</au><au>Wang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>74</volume><issue>5</issue><artnum>173</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this article, we are concerned with a diffusive SVEIR epidemic model with nonlinear incidences. We first obtain the well-posedness of solutions for the model. Then, the basic reproduction number
R
0
and the local basic reproduction number
R
¯
0
(
x
)
are calculated, which are defined as the spectral radii of the next-generation operators. The relationship between
R
0
and
R
¯
0
(
x
)
as well as the asymptotic properties of
R
0
when the diffusive rates tend to infinity or zero is investigated by introducing two compact linear operators
L
1
and
L
2
. Using the theory of monotone dynamical systems and the persistence theory of dynamical systems, we show that the disease-free equilibrium is globally asymptotically stable when
R
0
<
1
, while the disease is uniformly persistent when
R
0
>
1
. Furthermore, in the spatially homogeneous case, by using the Lyapunov functions method and LaSalle’s invariance principle, we completely obtain that the disease-free equilibrium is globally asymptotically stable if
R
0
≤
1
, and the endemic equilibrium is globally asymptotically stable if
R
0
>
1
and an additional condition is satisfied.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-02057-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2023-10, Vol.74 (5), Article 173 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2844756495 |
source | Springer Nature |
subjects | Asymptotic properties Dynamical systems Engineering Epidemics Equilibrium Liapunov functions Linear operators Mathematical Methods in Physics Theoretical and Applied Mechanics |
title | Dynamical analysis for a diffusive SVEIR epidemic model with nonlinear incidences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20for%20a%20diffusive%20SVEIR%20epidemic%20model%20with%20nonlinear%20incidences&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Zhou,%20Pan&rft.date=2023-10-01&rft.volume=74&rft.issue=5&rft.artnum=173&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-02057-y&rft_dat=%3Cproquest_cross%3E2844756495%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-e4e612dea1d13e4f16eb32ac1c0a86c933af656a2271be0faed104dd9680ad863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844756495&rft_id=info:pmid/&rfr_iscdi=true |