Loading…

Quantum information approach to the implementation of a neutron cavity

Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2023-07, Vol.25 (7), p.73016
Main Authors: Nahman-Lévesque, O, Sarenac, D, Lailey, O, Cory, D G, Huber, M G, Pushin, D A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c428t-674c302d7fe406aa452772014164869187f5f10fb22021f521ab6822cb06dad43
container_end_page
container_issue 7
container_start_page 73016
container_title New journal of physics
container_volume 25
creator Nahman-Lévesque, O
Sarenac, D
Lailey, O
Cory, D G
Huber, M G
Pushin, D A
description Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Furthermore, we introduce a toolbox for modelling crystal imperfections such as surface roughness and defects. Good agreement is found between the simulation and the experimental implementation, where leakage beams are present, modelling of which is impractical with the conventional theory of dynamical diffraction. Analysis of the standing neutron waves is presented in regards to the crystal geometry and parameters; and the conditions required for well-defined bounces are derived. The presented results enable new approaches to studying the setups utilizing neutron confinement, such as the experiments to measure neutron magnetic and electric dipole moments.
doi_str_mv 10.1088/1367-2630/acdb93
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2844783994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_636df4e5e9fa47eb9a646588a42ff363</doaj_id><sourcerecordid>2844783994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-674c302d7fe406aa452772014164869187f5f10fb22021f521ab6822cb06dad43</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxaOqSKXQe49Re-DCsv6K7RwR4mOllRASnEcTx-56tbFTx0Ha_55sgygHONke_-bpzZui-EnJBSVaLymXasEkJ0s0bVPzL8XxW-nru_u34vswbAmhVDN2XNw8jBjy2JU-uJg6zD6GEvs-RTSbMscyb2zpu35nOxvy_B1diWWwY07Tw-Czz_vT4sjhbrA_Xs-T4unm-vHqbrG-v11dXa4XRjCdF1IJwwlrlbOCSERRMaUYoYJKoWVNtXKVo8Q1jBFGXcUoNnLyaRoiW2wFPylWs24bcQt98h2mPUT08K8Q0x_AlL3ZWZBctk7YytYOhbJNjVLISmsUzDku-aT1a9aKQ_YwGJ-t2ZgYgjUZaK25InqCfs_QlMjf0Q4ZtnFMYZoRmBZCaV7XB1tkpkyKw5Cse7NGCRzWA4f84ZA_zOuZWs7mFh_7_5ph2wOrQAFRnFAJfesm8vwD8lPhF3ktnE4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844783994</pqid></control><display><type>article</type><title>Quantum information approach to the implementation of a neutron cavity</title><source>Publicly Available Content Database</source><creator>Nahman-Lévesque, O ; Sarenac, D ; Lailey, O ; Cory, D G ; Huber, M G ; Pushin, D A</creator><creatorcontrib>Nahman-Lévesque, O ; Sarenac, D ; Lailey, O ; Cory, D G ; Huber, M G ; Pushin, D A</creatorcontrib><description>Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Furthermore, we introduce a toolbox for modelling crystal imperfections such as surface roughness and defects. Good agreement is found between the simulation and the experimental implementation, where leakage beams are present, modelling of which is impractical with the conventional theory of dynamical diffraction. Analysis of the standing neutron waves is presented in regards to the crystal geometry and parameters; and the conditions required for well-defined bounces are derived. The presented results enable new approaches to studying the setups utilizing neutron confinement, such as the experiments to measure neutron magnetic and electric dipole moments.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/acdb93</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Confinement ; Crystal defects ; Crystals ; Dipole moments ; dynamical diffraction ; Electric dipoles ; Geometry ; Interferometry ; Modelling ; neutron cavity ; neutron interferometry ; Neutrons ; Physics ; Propagation ; quantum information ; Quantum phenomena ; Random walk ; Silicon ; Simulation ; Surface roughness ; Wave diffraction ; Wave functions</subject><ispartof>New journal of physics, 2023-07, Vol.25 (7), p.73016</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c428t-674c302d7fe406aa452772014164869187f5f10fb22021f521ab6822cb06dad43</cites><orcidid>0000-0003-1051-1683 ; 0000-0002-3795-8445 ; 0000-0003-2413-3556 ; 0000-0001-8575-3367 ; 0000-0002-4594-3403 ; 0000000324133556 ; 0000000310511683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2844783994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1983708$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nahman-Lévesque, O</creatorcontrib><creatorcontrib>Sarenac, D</creatorcontrib><creatorcontrib>Lailey, O</creatorcontrib><creatorcontrib>Cory, D G</creatorcontrib><creatorcontrib>Huber, M G</creatorcontrib><creatorcontrib>Pushin, D A</creatorcontrib><title>Quantum information approach to the implementation of a neutron cavity</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Furthermore, we introduce a toolbox for modelling crystal imperfections such as surface roughness and defects. Good agreement is found between the simulation and the experimental implementation, where leakage beams are present, modelling of which is impractical with the conventional theory of dynamical diffraction. Analysis of the standing neutron waves is presented in regards to the crystal geometry and parameters; and the conditions required for well-defined bounces are derived. The presented results enable new approaches to studying the setups utilizing neutron confinement, such as the experiments to measure neutron magnetic and electric dipole moments.</description><subject>Confinement</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Dipole moments</subject><subject>dynamical diffraction</subject><subject>Electric dipoles</subject><subject>Geometry</subject><subject>Interferometry</subject><subject>Modelling</subject><subject>neutron cavity</subject><subject>neutron interferometry</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Propagation</subject><subject>quantum information</subject><subject>Quantum phenomena</subject><subject>Random walk</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Surface roughness</subject><subject>Wave diffraction</subject><subject>Wave functions</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1P3DAQxaOqSKXQe49Re-DCsv6K7RwR4mOllRASnEcTx-56tbFTx0Ha_55sgygHONke_-bpzZui-EnJBSVaLymXasEkJ0s0bVPzL8XxW-nru_u34vswbAmhVDN2XNw8jBjy2JU-uJg6zD6GEvs-RTSbMscyb2zpu35nOxvy_B1diWWwY07Tw-Czz_vT4sjhbrA_Xs-T4unm-vHqbrG-v11dXa4XRjCdF1IJwwlrlbOCSERRMaUYoYJKoWVNtXKVo8Q1jBFGXcUoNnLyaRoiW2wFPylWs24bcQt98h2mPUT08K8Q0x_AlL3ZWZBctk7YytYOhbJNjVLISmsUzDku-aT1a9aKQ_YwGJ-t2ZgYgjUZaK25InqCfs_QlMjf0Q4ZtnFMYZoRmBZCaV7XB1tkpkyKw5Cse7NGCRzWA4f84ZA_zOuZWs7mFh_7_5ph2wOrQAFRnFAJfesm8vwD8lPhF3ktnE4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Nahman-Lévesque, O</creator><creator>Sarenac, D</creator><creator>Lailey, O</creator><creator>Cory, D G</creator><creator>Huber, M G</creator><creator>Pushin, D A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1051-1683</orcidid><orcidid>https://orcid.org/0000-0002-3795-8445</orcidid><orcidid>https://orcid.org/0000-0003-2413-3556</orcidid><orcidid>https://orcid.org/0000-0001-8575-3367</orcidid><orcidid>https://orcid.org/0000-0002-4594-3403</orcidid><orcidid>https://orcid.org/0000000324133556</orcidid><orcidid>https://orcid.org/0000000310511683</orcidid></search><sort><creationdate>20230701</creationdate><title>Quantum information approach to the implementation of a neutron cavity</title><author>Nahman-Lévesque, O ; Sarenac, D ; Lailey, O ; Cory, D G ; Huber, M G ; Pushin, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-674c302d7fe406aa452772014164869187f5f10fb22021f521ab6822cb06dad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Confinement</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Dipole moments</topic><topic>dynamical diffraction</topic><topic>Electric dipoles</topic><topic>Geometry</topic><topic>Interferometry</topic><topic>Modelling</topic><topic>neutron cavity</topic><topic>neutron interferometry</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Propagation</topic><topic>quantum information</topic><topic>Quantum phenomena</topic><topic>Random walk</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Surface roughness</topic><topic>Wave diffraction</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahman-Lévesque, O</creatorcontrib><creatorcontrib>Sarenac, D</creatorcontrib><creatorcontrib>Lailey, O</creatorcontrib><creatorcontrib>Cory, D G</creatorcontrib><creatorcontrib>Huber, M G</creatorcontrib><creatorcontrib>Pushin, D A</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahman-Lévesque, O</au><au>Sarenac, D</au><au>Lailey, O</au><au>Cory, D G</au><au>Huber, M G</au><au>Pushin, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum information approach to the implementation of a neutron cavity</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><spage>73016</spage><pages>73016-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Using the quantum information model of dynamical diffraction we consider a neutron cavity composed of two perfect crystal silicon blades capable of containing the neutron wavefunction. We show that the internal confinement of the neutrons through Bragg diffraction can be modelled by a quantum random walk. Furthermore, we introduce a toolbox for modelling crystal imperfections such as surface roughness and defects. Good agreement is found between the simulation and the experimental implementation, where leakage beams are present, modelling of which is impractical with the conventional theory of dynamical diffraction. Analysis of the standing neutron waves is presented in regards to the crystal geometry and parameters; and the conditions required for well-defined bounces are derived. The presented results enable new approaches to studying the setups utilizing neutron confinement, such as the experiments to measure neutron magnetic and electric dipole moments.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/acdb93</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1051-1683</orcidid><orcidid>https://orcid.org/0000-0002-3795-8445</orcidid><orcidid>https://orcid.org/0000-0003-2413-3556</orcidid><orcidid>https://orcid.org/0000-0001-8575-3367</orcidid><orcidid>https://orcid.org/0000-0002-4594-3403</orcidid><orcidid>https://orcid.org/0000000324133556</orcidid><orcidid>https://orcid.org/0000000310511683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2023-07, Vol.25 (7), p.73016
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2844783994
source Publicly Available Content Database
subjects Confinement
Crystal defects
Crystals
Dipole moments
dynamical diffraction
Electric dipoles
Geometry
Interferometry
Modelling
neutron cavity
neutron interferometry
Neutrons
Physics
Propagation
quantum information
Quantum phenomena
Random walk
Silicon
Simulation
Surface roughness
Wave diffraction
Wave functions
title Quantum information approach to the implementation of a neutron cavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20information%20approach%20to%20the%20implementation%20of%20a%20neutron%20cavity&rft.jtitle=New%20journal%20of%20physics&rft.au=Nahman-L%C3%A9vesque,%20O&rft.date=2023-07-01&rft.volume=25&rft.issue=7&rft.spage=73016&rft.pages=73016-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/acdb93&rft_dat=%3Cproquest_doaj_%3E2844783994%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-674c302d7fe406aa452772014164869187f5f10fb22021f521ab6822cb06dad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844783994&rft_id=info:pmid/&rfr_iscdi=true