Loading…
Lithography-free reconfigurable integrated photonic processor
Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here,...
Saved in:
Published in: | Nature photonics 2023-08, Vol.17 (8), p.710-716 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3 |
container_end_page | 716 |
container_issue | 8 |
container_start_page | 710 |
container_title | Nature photonics |
container_volume | 17 |
creator | Wu, Tianwei Menarini, Marco Gao, Zihe Feng, Liang |
description | Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements.
Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network. |
doi_str_mv | 10.1038/s41566-023-01205-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844932402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844932402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMRtsnxPbAwOq-CdVYoHZcp1zm6rEwU6HfnsMQbAx3Un3e-_pHiGXnF1zBvomS143DWUCKOOC1ZQdkRlX0lCpDRz_7ro-JWc5bxmrwQgxI7fLbtzEdXLD5kBDQqwS-tiHbr1PbrXDqutHLOcR22rYxDH2na-GFD3mHNM5OQlul_HiZ87J28P96-KJLl8enxd3S-qBm5EGqRhvWu65glVooVXAQhO0QwR04FqtjMbAVq0IXgXvmASnXGM4egUiwJxcTb4l-WOPebTbuE99ibRCS2lAyPL6nIiJ8inmnDDYIXXvLh0sZ_arJjvVZAtrv2uyrIhgEuUC92tMf9b_qD4BUfVsEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844932402</pqid></control><display><type>article</type><title>Lithography-free reconfigurable integrated photonic processor</title><source>Nature</source><creator>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</creator><creatorcontrib>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</creatorcontrib><description>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements.
Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01205-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1107/1109 ; Algorithms ; Applied and Technical Physics ; Dynamic control ; Fabrication ; Information processing ; Light transmission ; Lithography ; Microprocessors ; Neural networks ; Optical communication ; Optical switching ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Signal processing ; Spatial light modulators ; Speech recognition</subject><ispartof>Nature photonics, 2023-08, Vol.17 (8), p.710-716</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</citedby><cites>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</cites><orcidid>0000-0002-8041-7054 ; 0000-0003-1844-0541 ; 0000-0002-1960-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Tianwei</creatorcontrib><creatorcontrib>Menarini, Marco</creatorcontrib><creatorcontrib>Gao, Zihe</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><title>Lithography-free reconfigurable integrated photonic processor</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements.
Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</description><subject>639/624/1075/1079</subject><subject>639/624/1107/1109</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Dynamic control</subject><subject>Fabrication</subject><subject>Information processing</subject><subject>Light transmission</subject><subject>Lithography</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical switching</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Signal processing</subject><subject>Spatial light modulators</subject><subject>Speech recognition</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMRtsnxPbAwOq-CdVYoHZcp1zm6rEwU6HfnsMQbAx3Un3e-_pHiGXnF1zBvomS143DWUCKOOC1ZQdkRlX0lCpDRz_7ro-JWc5bxmrwQgxI7fLbtzEdXLD5kBDQqwS-tiHbr1PbrXDqutHLOcR22rYxDH2na-GFD3mHNM5OQlul_HiZ87J28P96-KJLl8enxd3S-qBm5EGqRhvWu65glVooVXAQhO0QwR04FqtjMbAVq0IXgXvmASnXGM4egUiwJxcTb4l-WOPebTbuE99ibRCS2lAyPL6nIiJ8inmnDDYIXXvLh0sZ_arJjvVZAtrv2uyrIhgEuUC92tMf9b_qD4BUfVsEQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wu, Tianwei</creator><creator>Menarini, Marco</creator><creator>Gao, Zihe</creator><creator>Feng, Liang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8041-7054</orcidid><orcidid>https://orcid.org/0000-0003-1844-0541</orcidid><orcidid>https://orcid.org/0000-0002-1960-1864</orcidid></search><sort><creationdate>20230801</creationdate><title>Lithography-free reconfigurable integrated photonic processor</title><author>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1107/1109</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Dynamic control</topic><topic>Fabrication</topic><topic>Information processing</topic><topic>Light transmission</topic><topic>Lithography</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical switching</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Signal processing</topic><topic>Spatial light modulators</topic><topic>Speech recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tianwei</creatorcontrib><creatorcontrib>Menarini, Marco</creatorcontrib><creatorcontrib>Gao, Zihe</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tianwei</au><au>Menarini, Marco</au><au>Gao, Zihe</au><au>Feng, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithography-free reconfigurable integrated photonic processor</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>17</volume><issue>8</issue><spage>710</spage><epage>716</epage><pages>710-716</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements.
Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01205-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8041-7054</orcidid><orcidid>https://orcid.org/0000-0003-1844-0541</orcidid><orcidid>https://orcid.org/0000-0002-1960-1864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2023-08, Vol.17 (8), p.710-716 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2844932402 |
source | Nature |
subjects | 639/624/1075/1079 639/624/1107/1109 Algorithms Applied and Technical Physics Dynamic control Fabrication Information processing Light transmission Lithography Microprocessors Neural networks Optical communication Optical switching Photonics Physics Physics and Astronomy Quantum Physics Signal processing Spatial light modulators Speech recognition |
title | Lithography-free reconfigurable integrated photonic processor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithography-free%20reconfigurable%20integrated%20photonic%20processor&rft.jtitle=Nature%20photonics&rft.au=Wu,%20Tianwei&rft.date=2023-08-01&rft.volume=17&rft.issue=8&rft.spage=710&rft.epage=716&rft.pages=710-716&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01205-0&rft_dat=%3Cproquest_cross%3E2844932402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844932402&rft_id=info:pmid/&rfr_iscdi=true |