Loading…

Lithography-free reconfigurable integrated photonic processor

Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2023-08, Vol.17 (8), p.710-716
Main Authors: Wu, Tianwei, Menarini, Marco, Gao, Zihe, Feng, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3
cites cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3
container_end_page 716
container_issue 8
container_start_page 710
container_title Nature photonics
container_volume 17
creator Wu, Tianwei
Menarini, Marco
Gao, Zihe
Feng, Liang
description Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements. Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.
doi_str_mv 10.1038/s41566-023-01205-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844932402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844932402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMRtsnxPbAwOq-CdVYoHZcp1zm6rEwU6HfnsMQbAx3Un3e-_pHiGXnF1zBvomS143DWUCKOOC1ZQdkRlX0lCpDRz_7ro-JWc5bxmrwQgxI7fLbtzEdXLD5kBDQqwS-tiHbr1PbrXDqutHLOcR22rYxDH2na-GFD3mHNM5OQlul_HiZ87J28P96-KJLl8enxd3S-qBm5EGqRhvWu65glVooVXAQhO0QwR04FqtjMbAVq0IXgXvmASnXGM4egUiwJxcTb4l-WOPebTbuE99ibRCS2lAyPL6nIiJ8inmnDDYIXXvLh0sZ_arJjvVZAtrv2uyrIhgEuUC92tMf9b_qD4BUfVsEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844932402</pqid></control><display><type>article</type><title>Lithography-free reconfigurable integrated photonic processor</title><source>Nature</source><creator>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</creator><creatorcontrib>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</creatorcontrib><description>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements. Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01205-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1107/1109 ; Algorithms ; Applied and Technical Physics ; Dynamic control ; Fabrication ; Information processing ; Light transmission ; Lithography ; Microprocessors ; Neural networks ; Optical communication ; Optical switching ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Signal processing ; Spatial light modulators ; Speech recognition</subject><ispartof>Nature photonics, 2023-08, Vol.17 (8), p.710-716</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</citedby><cites>FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</cites><orcidid>0000-0002-8041-7054 ; 0000-0003-1844-0541 ; 0000-0002-1960-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Tianwei</creatorcontrib><creatorcontrib>Menarini, Marco</creatorcontrib><creatorcontrib>Gao, Zihe</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><title>Lithography-free reconfigurable integrated photonic processor</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements. Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</description><subject>639/624/1075/1079</subject><subject>639/624/1107/1109</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Dynamic control</subject><subject>Fabrication</subject><subject>Information processing</subject><subject>Light transmission</subject><subject>Lithography</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical switching</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Signal processing</subject><subject>Spatial light modulators</subject><subject>Speech recognition</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMRtsnxPbAwOq-CdVYoHZcp1zm6rEwU6HfnsMQbAx3Un3e-_pHiGXnF1zBvomS143DWUCKOOC1ZQdkRlX0lCpDRz_7ro-JWc5bxmrwQgxI7fLbtzEdXLD5kBDQqwS-tiHbr1PbrXDqutHLOcR22rYxDH2na-GFD3mHNM5OQlul_HiZ87J28P96-KJLl8enxd3S-qBm5EGqRhvWu65glVooVXAQhO0QwR04FqtjMbAVq0IXgXvmASnXGM4egUiwJxcTb4l-WOPebTbuE99ibRCS2lAyPL6nIiJ8inmnDDYIXXvLh0sZ_arJjvVZAtrv2uyrIhgEuUC92tMf9b_qD4BUfVsEQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wu, Tianwei</creator><creator>Menarini, Marco</creator><creator>Gao, Zihe</creator><creator>Feng, Liang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8041-7054</orcidid><orcidid>https://orcid.org/0000-0003-1844-0541</orcidid><orcidid>https://orcid.org/0000-0002-1960-1864</orcidid></search><sort><creationdate>20230801</creationdate><title>Lithography-free reconfigurable integrated photonic processor</title><author>Wu, Tianwei ; Menarini, Marco ; Gao, Zihe ; Feng, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1107/1109</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Dynamic control</topic><topic>Fabrication</topic><topic>Information processing</topic><topic>Light transmission</topic><topic>Lithography</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical switching</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Signal processing</topic><topic>Spatial light modulators</topic><topic>Speech recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tianwei</creatorcontrib><creatorcontrib>Menarini, Marco</creatorcontrib><creatorcontrib>Gao, Zihe</creatorcontrib><creatorcontrib>Feng, Liang</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tianwei</au><au>Menarini, Marco</au><au>Gao, Zihe</au><au>Feng, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithography-free reconfigurable integrated photonic processor</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>17</volume><issue>8</issue><spage>710</spage><epage>716</epage><pages>710-716</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Integrated photonics, because of its intrinsic high speed, large bandwidth and unlimited parallelism, is critical in the drive to ease the increasing data traffic. Its technological enabler is high-precision lithography, which allows for the fabrication of high-resolution photonic structures. Here, in complete contrast to the state of the art, where photonic functions are predefined by lithographically modulating the real index, we report a lithography-free paradigm for an integrated photonic processor, targeting dynamic control of spatial-temporal modulations of the imaginary index on an active semiconductor platform, without the need for lithography. We demonstrate an imaginary-index-driven methodology to tailor optical-gain distributions to rationally execute prescribed optical responses and configure desired photonic functionality to route and switch optical signals. Leveraging its real-time reconfigurability, we realize photonic neural networks with extraordinary flexibility, performing in situ training of vowel recognition with high accuracy. The programmability and multifunctionality intrinsically arising from the lithography-free characteristics can lead to a new paradigm for integrated photonic signal processing to conduct and reconfigure complex computation algorithms, accelerating the information-processing speed to achieve long-term performance requirements. Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01205-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8041-7054</orcidid><orcidid>https://orcid.org/0000-0003-1844-0541</orcidid><orcidid>https://orcid.org/0000-0002-1960-1864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2023-08, Vol.17 (8), p.710-716
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2844932402
source Nature
subjects 639/624/1075/1079
639/624/1107/1109
Algorithms
Applied and Technical Physics
Dynamic control
Fabrication
Information processing
Light transmission
Lithography
Microprocessors
Neural networks
Optical communication
Optical switching
Photonics
Physics
Physics and Astronomy
Quantum Physics
Signal processing
Spatial light modulators
Speech recognition
title Lithography-free reconfigurable integrated photonic processor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithography-free%20reconfigurable%20integrated%20photonic%20processor&rft.jtitle=Nature%20photonics&rft.au=Wu,%20Tianwei&rft.date=2023-08-01&rft.volume=17&rft.issue=8&rft.spage=710&rft.epage=716&rft.pages=710-716&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01205-0&rft_dat=%3Cproquest_cross%3E2844932402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f47016d1c173bfd3d730f6f8aee3ea3ad8798ef0bd2fc7fca043a7a691ec732f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844932402&rft_id=info:pmid/&rfr_iscdi=true