Loading…

Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance

Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2023-07, Vol.16 (7), p.9471-9479
Main Authors: Xiong, Chuanyin, Zhang, Yongkang, Xu, Jiayu, Dang, Weihua, Sun, Xuhui, An, Meng, Ni, Yonghao, Mao, Junjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543
cites cdi_FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543
container_end_page 9479
container_issue 7
container_start_page 9471
container_title Nano research
container_volume 16
creator Xiong, Chuanyin
Zhang, Yongkang
Xu, Jiayu
Dang, Weihua
Sun, Xuhui
An, Meng
Ni, Yonghao
Mao, Junjie
description Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance of paper-based energy storage devices still faces many challenges. Herein, we propose a structure engineering technique to develop a conductive integrated gradient porous paper-based (CIGPP) supercapacitor, and the kinetics process for the influence of gradient holes on the electrochemical performance of the CIGPP is investigated through experimental tests and COMSOL simulations. All results indicate that the gradient holes endow the CIGPP with an enhanced electrochemical performance. Specifically, the CIGPP shows a significant improvement in the specific capacitance, displays rich frequency response characteristics for electrolyte ions, and exhibits a good rate performance. Also, the CIGPP supercapacitor exhibits a low self-discharge and maintains a stable electrochemical performance in different electrolyte environments because of gradient holes. More importantly, when the CIGPP is used as a substrate to fabricate a CIGPP-PANI hybrid, it still maintains good electrochemical properties. In addition, the CIGPP supercapacitor also shows excellent stability and sensitivity for monitoring human motion and deaf-mute voicing, showing potential application prospects. This study provides a reference and feasible way for the design of structure-engineered integrated paper-based energy storage devices with outstanding comprehensive electrochemical performance.
doi_str_mv 10.1007/s12274-023-5694-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845346056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845346056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543</originalsourceid><addsrcrecordid>eNp1UMlOwzAQjRBIlOUDuEXibLAdO7GPqGITlbjA2XKdSeuqjYPtCPUT-GumCogTvszT-C2aVxRXjN4wSpvbxDhvBKG8IrLWguyPihnTWhGK7_gXMy5Oi7OUNpTWnAk1K75efA_Zu1QOMThIqexCLFOOo8tjBAL9CgkQoS19n2EVbUaIo_XQ53IIMYyotQNEsrQJ_9KI2NnBOp9DTOWnz-tyGUI6CGELLmPQGnbe2W2JVMzb2d7BRXHS2W2Cy595Xrw_3L_Nn8ji9fF5frcgrmJ1Jngll5VgTGlQQjvrJAgmAJjgVkvdONaoBqpOgtJC6aVsWt7WrcKNlVJU58X15IsHf4yQstmEMfYYabgSaF1TWSOLTSwXQ0oROjNEv7Nxbxg1h8bN1LjBxs2hcbNHDZ80Cbn9CuKf8_-ib9T9h8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845346056</pqid></control><display><type>article</type><title>Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance</title><source>Springer Nature</source><creator>Xiong, Chuanyin ; Zhang, Yongkang ; Xu, Jiayu ; Dang, Weihua ; Sun, Xuhui ; An, Meng ; Ni, Yonghao ; Mao, Junjie</creator><creatorcontrib>Xiong, Chuanyin ; Zhang, Yongkang ; Xu, Jiayu ; Dang, Weihua ; Sun, Xuhui ; An, Meng ; Ni, Yonghao ; Mao, Junjie</creatorcontrib><description>Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance of paper-based energy storage devices still faces many challenges. Herein, we propose a structure engineering technique to develop a conductive integrated gradient porous paper-based (CIGPP) supercapacitor, and the kinetics process for the influence of gradient holes on the electrochemical performance of the CIGPP is investigated through experimental tests and COMSOL simulations. All results indicate that the gradient holes endow the CIGPP with an enhanced electrochemical performance. Specifically, the CIGPP shows a significant improvement in the specific capacitance, displays rich frequency response characteristics for electrolyte ions, and exhibits a good rate performance. Also, the CIGPP supercapacitor exhibits a low self-discharge and maintains a stable electrochemical performance in different electrolyte environments because of gradient holes. More importantly, when the CIGPP is used as a substrate to fabricate a CIGPP-PANI hybrid, it still maintains good electrochemical properties. In addition, the CIGPP supercapacitor also shows excellent stability and sensitivity for monitoring human motion and deaf-mute voicing, showing potential application prospects. This study provides a reference and feasible way for the design of structure-engineered integrated paper-based energy storage devices with outstanding comprehensive electrochemical performance.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5694-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Capacitance ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Electrons ; Energy storage ; Frequency dependence ; Frequency response ; Functional materials ; Human motion ; Kinetics ; Materials Science ; Motion stability ; Nanotechnology ; Research Article ; Substrates ; Supercapacitors</subject><ispartof>Nano research, 2023-07, Vol.16 (7), p.9471-9479</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543</citedby><cites>FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Xiong, Chuanyin</creatorcontrib><creatorcontrib>Zhang, Yongkang</creatorcontrib><creatorcontrib>Xu, Jiayu</creatorcontrib><creatorcontrib>Dang, Weihua</creatorcontrib><creatorcontrib>Sun, Xuhui</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Mao, Junjie</creatorcontrib><title>Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance of paper-based energy storage devices still faces many challenges. Herein, we propose a structure engineering technique to develop a conductive integrated gradient porous paper-based (CIGPP) supercapacitor, and the kinetics process for the influence of gradient holes on the electrochemical performance of the CIGPP is investigated through experimental tests and COMSOL simulations. All results indicate that the gradient holes endow the CIGPP with an enhanced electrochemical performance. Specifically, the CIGPP shows a significant improvement in the specific capacitance, displays rich frequency response characteristics for electrolyte ions, and exhibits a good rate performance. Also, the CIGPP supercapacitor exhibits a low self-discharge and maintains a stable electrochemical performance in different electrolyte environments because of gradient holes. More importantly, when the CIGPP is used as a substrate to fabricate a CIGPP-PANI hybrid, it still maintains good electrochemical properties. In addition, the CIGPP supercapacitor also shows excellent stability and sensitivity for monitoring human motion and deaf-mute voicing, showing potential application prospects. This study provides a reference and feasible way for the design of structure-engineered integrated paper-based energy storage devices with outstanding comprehensive electrochemical performance.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>Functional materials</subject><subject>Human motion</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Motion stability</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Substrates</subject><subject>Supercapacitors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQjRBIlOUDuEXibLAdO7GPqGITlbjA2XKdSeuqjYPtCPUT-GumCogTvszT-C2aVxRXjN4wSpvbxDhvBKG8IrLWguyPihnTWhGK7_gXMy5Oi7OUNpTWnAk1K75efA_Zu1QOMThIqexCLFOOo8tjBAL9CgkQoS19n2EVbUaIo_XQ53IIMYyotQNEsrQJ_9KI2NnBOp9DTOWnz-tyGUI6CGELLmPQGnbe2W2JVMzb2d7BRXHS2W2Cy595Xrw_3L_Nn8ji9fF5frcgrmJ1Jngll5VgTGlQQjvrJAgmAJjgVkvdONaoBqpOgtJC6aVsWt7WrcKNlVJU58X15IsHf4yQstmEMfYYabgSaF1TWSOLTSwXQ0oROjNEv7Nxbxg1h8bN1LjBxs2hcbNHDZ80Cbn9CuKf8_-ib9T9h8k</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Xiong, Chuanyin</creator><creator>Zhang, Yongkang</creator><creator>Xu, Jiayu</creator><creator>Dang, Weihua</creator><creator>Sun, Xuhui</creator><creator>An, Meng</creator><creator>Ni, Yonghao</creator><creator>Mao, Junjie</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230701</creationdate><title>Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance</title><author>Xiong, Chuanyin ; Zhang, Yongkang ; Xu, Jiayu ; Dang, Weihua ; Sun, Xuhui ; An, Meng ; Ni, Yonghao ; Mao, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>Functional materials</topic><topic>Human motion</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Motion stability</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Substrates</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Chuanyin</creatorcontrib><creatorcontrib>Zhang, Yongkang</creatorcontrib><creatorcontrib>Xu, Jiayu</creatorcontrib><creatorcontrib>Dang, Weihua</creatorcontrib><creatorcontrib>Sun, Xuhui</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Mao, Junjie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Chuanyin</au><au>Zhang, Yongkang</au><au>Xu, Jiayu</au><au>Dang, Weihua</au><au>Sun, Xuhui</au><au>An, Meng</au><au>Ni, Yonghao</au><au>Mao, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>16</volume><issue>7</issue><spage>9471</spage><epage>9479</epage><pages>9471-9479</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance of paper-based energy storage devices still faces many challenges. Herein, we propose a structure engineering technique to develop a conductive integrated gradient porous paper-based (CIGPP) supercapacitor, and the kinetics process for the influence of gradient holes on the electrochemical performance of the CIGPP is investigated through experimental tests and COMSOL simulations. All results indicate that the gradient holes endow the CIGPP with an enhanced electrochemical performance. Specifically, the CIGPP shows a significant improvement in the specific capacitance, displays rich frequency response characteristics for electrolyte ions, and exhibits a good rate performance. Also, the CIGPP supercapacitor exhibits a low self-discharge and maintains a stable electrochemical performance in different electrolyte environments because of gradient holes. More importantly, when the CIGPP is used as a substrate to fabricate a CIGPP-PANI hybrid, it still maintains good electrochemical properties. In addition, the CIGPP supercapacitor also shows excellent stability and sensitivity for monitoring human motion and deaf-mute voicing, showing potential application prospects. This study provides a reference and feasible way for the design of structure-engineered integrated paper-based energy storage devices with outstanding comprehensive electrochemical performance.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5694-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-07, Vol.16 (7), p.9471-9479
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2845346056
source Springer Nature
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Capacitance
Chemistry and Materials Science
Condensed Matter Physics
Electrochemical analysis
Electrochemistry
Electrolytes
Electrons
Energy storage
Frequency dependence
Frequency response
Functional materials
Human motion
Kinetics
Materials Science
Motion stability
Nanotechnology
Research Article
Substrates
Supercapacitors
title Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20process%20for%20structure-engineered%20integrated%20gradient%20porous%20paper-based%20supercapacitors%20with%20boosted%20electrochemical%20performance&rft.jtitle=Nano%20research&rft.au=Xiong,%20Chuanyin&rft.date=2023-07-01&rft.volume=16&rft.issue=7&rft.spage=9471&rft.epage=9479&rft.pages=9471-9479&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5694-y&rft_dat=%3Cproquest_cross%3E2845346056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-27425341189e849cac5e414ee142a9597c1787e3f5e89489b57d2d6d83f5a5543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845346056&rft_id=info:pmid/&rfr_iscdi=true