Loading…
Suicide Classification for News Media Using Convolutional Neural Networks
Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suici...
Saved in:
Published in: | Health communication 2023-10, Vol.38 (10), p.2178-2187 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803 |
container_end_page | 2187 |
container_issue | 10 |
container_start_page | 2178 |
container_title | Health communication |
container_volume | 38 |
creator | Bello, Hugo J. Palomar-Ciria, Nora Baca-García, Enrique Lozano, Celia |
description | Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies. |
doi_str_mv | 10.1080/10410236.2022.2058686 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2845352539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661488192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EYil8AigSFy4pXhP7BqrYJJYD5Ww5XpAhjYudUPH3uLTlwIHLzEjzZtED4BjBMYIcniNIEcSkGmOIcQ6MV7zaAvuIEVzWENfbuc5MuYT2wEFKbxBCVlG8C_YIyxREeB_cPQ9ee2OLSatS8s5r1fvQFS7E4tEuUvFgjVfFS_LdazEJ3WdohyWg2twe4k_qFyG-p0Ow41Sb7NE6j8D0-mo6uS3vn27uJpf3pSYU96WzNXE1N44LrCg2ghKLmGsaIwwiGmuNKRKQ1XUFqdNaIWNE0yAonGAckhE4W62dx_Ax2NTLmU_atq3qbBiSxFWFKOdI4Iye_kHfwhDz65nilBGGGRGZYitKx5BStE7Oo5-p-CURlEvVcqNaLlXLteo8d7LePjQza36nNm4zcLECfJdtzlS21BrZq682RBdVp32S5P8b32CTjC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845352539</pqid></control><display><type>article</type><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</creator><creatorcontrib>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</creatorcontrib><description>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</description><identifier>ISSN: 1041-0236</identifier><identifier>EISSN: 1532-7027</identifier><identifier>DOI: 10.1080/10410236.2022.2058686</identifier><identifier>PMID: 35532012</identifier><language>eng</language><publisher>England: Routledge</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Big Data ; Efficacy ; Humans ; Mass Media ; Neural networks ; Neural Networks, Computer ; News media ; Prevention ; Prevention programs ; Social Media ; Suicidal behavior ; Suicide</subject><ispartof>Health communication, 2023-10, Vol.38 (10), p.2178-2187</ispartof><rights>2022 Taylor & Francis Group, LLC 2022</rights><rights>2022 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</cites><orcidid>0000-0001-5830-1154 ; 0000-0002-2293-3106 ; 0000-0002-3687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35532012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bello, Hugo J.</creatorcontrib><creatorcontrib>Palomar-Ciria, Nora</creatorcontrib><creatorcontrib>Baca-García, Enrique</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><title>Health communication</title><addtitle>Health Commun</addtitle><description>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Efficacy</subject><subject>Humans</subject><subject>Mass Media</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>News media</subject><subject>Prevention</subject><subject>Prevention programs</subject><subject>Social Media</subject><subject>Suicidal behavior</subject><subject>Suicide</subject><issn>1041-0236</issn><issn>1532-7027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9kMlOwzAQQC0EYil8AigSFy4pXhP7BqrYJJYD5Ww5XpAhjYudUPH3uLTlwIHLzEjzZtED4BjBMYIcniNIEcSkGmOIcQ6MV7zaAvuIEVzWENfbuc5MuYT2wEFKbxBCVlG8C_YIyxREeB_cPQ9ee2OLSatS8s5r1fvQFS7E4tEuUvFgjVfFS_LdazEJ3WdohyWg2twe4k_qFyG-p0Ow41Sb7NE6j8D0-mo6uS3vn27uJpf3pSYU96WzNXE1N44LrCg2ghKLmGsaIwwiGmuNKRKQ1XUFqdNaIWNE0yAonGAckhE4W62dx_Ax2NTLmU_atq3qbBiSxFWFKOdI4Iye_kHfwhDz65nilBGGGRGZYitKx5BStE7Oo5-p-CURlEvVcqNaLlXLteo8d7LePjQza36nNm4zcLECfJdtzlS21BrZq682RBdVp32S5P8b32CTjC4</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Bello, Hugo J.</creator><creator>Palomar-Ciria, Nora</creator><creator>Baca-García, Enrique</creator><creator>Lozano, Celia</creator><general>Routledge</general><general>Routledge, Taylor & Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7ST</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5830-1154</orcidid><orcidid>https://orcid.org/0000-0002-2293-3106</orcidid><orcidid>https://orcid.org/0000-0002-3687-1938</orcidid></search><sort><creationdate>202310</creationdate><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><author>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Efficacy</topic><topic>Humans</topic><topic>Mass Media</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>News media</topic><topic>Prevention</topic><topic>Prevention programs</topic><topic>Social Media</topic><topic>Suicidal behavior</topic><topic>Suicide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello, Hugo J.</creatorcontrib><creatorcontrib>Palomar-Ciria, Nora</creatorcontrib><creatorcontrib>Baca-García, Enrique</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Health communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello, Hugo J.</au><au>Palomar-Ciria, Nora</au><au>Baca-García, Enrique</au><au>Lozano, Celia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suicide Classification for News Media Using Convolutional Neural Networks</atitle><jtitle>Health communication</jtitle><addtitle>Health Commun</addtitle><date>2023-10</date><risdate>2023</risdate><volume>38</volume><issue>10</issue><spage>2178</spage><epage>2187</epage><pages>2178-2187</pages><issn>1041-0236</issn><eissn>1532-7027</eissn><abstract>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</abstract><cop>England</cop><pub>Routledge</pub><pmid>35532012</pmid><doi>10.1080/10410236.2022.2058686</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5830-1154</orcidid><orcidid>https://orcid.org/0000-0002-2293-3106</orcidid><orcidid>https://orcid.org/0000-0002-3687-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-0236 |
ispartof | Health communication, 2023-10, Vol.38 (10), p.2178-2187 |
issn | 1041-0236 1532-7027 |
language | eng |
recordid | cdi_proquest_journals_2845352539 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Taylor and Francis Social Sciences and Humanities Collection |
subjects | Artificial Intelligence Artificial neural networks Big Data Efficacy Humans Mass Media Neural networks Neural Networks, Computer News media Prevention Prevention programs Social Media Suicidal behavior Suicide |
title | Suicide Classification for News Media Using Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suicide%20Classification%20for%20News%20Media%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=Health%20communication&rft.au=Bello,%20Hugo%20J.&rft.date=2023-10&rft.volume=38&rft.issue=10&rft.spage=2178&rft.epage=2187&rft.pages=2178-2187&rft.issn=1041-0236&rft.eissn=1532-7027&rft_id=info:doi/10.1080/10410236.2022.2058686&rft_dat=%3Cproquest_pubme%3E2661488192%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845352539&rft_id=info:pmid/35532012&rfr_iscdi=true |