Loading…

Suicide Classification for News Media Using Convolutional Neural Networks

Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suici...

Full description

Saved in:
Bibliographic Details
Published in:Health communication 2023-10, Vol.38 (10), p.2178-2187
Main Authors: Bello, Hugo J., Palomar-Ciria, Nora, Baca-García, Enrique, Lozano, Celia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803
container_end_page 2187
container_issue 10
container_start_page 2178
container_title Health communication
container_volume 38
creator Bello, Hugo J.
Palomar-Ciria, Nora
Baca-García, Enrique
Lozano, Celia
description Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.
doi_str_mv 10.1080/10410236.2022.2058686
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2845352539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661488192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EYil8AigSFy4pXhP7BqrYJJYD5Ww5XpAhjYudUPH3uLTlwIHLzEjzZtED4BjBMYIcniNIEcSkGmOIcQ6MV7zaAvuIEVzWENfbuc5MuYT2wEFKbxBCVlG8C_YIyxREeB_cPQ9ee2OLSatS8s5r1fvQFS7E4tEuUvFgjVfFS_LdazEJ3WdohyWg2twe4k_qFyG-p0Ow41Sb7NE6j8D0-mo6uS3vn27uJpf3pSYU96WzNXE1N44LrCg2ghKLmGsaIwwiGmuNKRKQ1XUFqdNaIWNE0yAonGAckhE4W62dx_Ax2NTLmU_atq3qbBiSxFWFKOdI4Iye_kHfwhDz65nilBGGGRGZYitKx5BStE7Oo5-p-CURlEvVcqNaLlXLteo8d7LePjQza36nNm4zcLECfJdtzlS21BrZq682RBdVp32S5P8b32CTjC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845352539</pqid></control><display><type>article</type><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</creator><creatorcontrib>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</creatorcontrib><description>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</description><identifier>ISSN: 1041-0236</identifier><identifier>EISSN: 1532-7027</identifier><identifier>DOI: 10.1080/10410236.2022.2058686</identifier><identifier>PMID: 35532012</identifier><language>eng</language><publisher>England: Routledge</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Big Data ; Efficacy ; Humans ; Mass Media ; Neural networks ; Neural Networks, Computer ; News media ; Prevention ; Prevention programs ; Social Media ; Suicidal behavior ; Suicide</subject><ispartof>Health communication, 2023-10, Vol.38 (10), p.2178-2187</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</cites><orcidid>0000-0001-5830-1154 ; 0000-0002-2293-3106 ; 0000-0002-3687-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35532012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bello, Hugo J.</creatorcontrib><creatorcontrib>Palomar-Ciria, Nora</creatorcontrib><creatorcontrib>Baca-García, Enrique</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><title>Health communication</title><addtitle>Health Commun</addtitle><description>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Big Data</subject><subject>Efficacy</subject><subject>Humans</subject><subject>Mass Media</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>News media</subject><subject>Prevention</subject><subject>Prevention programs</subject><subject>Social Media</subject><subject>Suicidal behavior</subject><subject>Suicide</subject><issn>1041-0236</issn><issn>1532-7027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9kMlOwzAQQC0EYil8AigSFy4pXhP7BqrYJJYD5Ww5XpAhjYudUPH3uLTlwIHLzEjzZtED4BjBMYIcniNIEcSkGmOIcQ6MV7zaAvuIEVzWENfbuc5MuYT2wEFKbxBCVlG8C_YIyxREeB_cPQ9ee2OLSatS8s5r1fvQFS7E4tEuUvFgjVfFS_LdazEJ3WdohyWg2twe4k_qFyG-p0Ow41Sb7NE6j8D0-mo6uS3vn27uJpf3pSYU96WzNXE1N44LrCg2ghKLmGsaIwwiGmuNKRKQ1XUFqdNaIWNE0yAonGAckhE4W62dx_Ax2NTLmU_atq3qbBiSxFWFKOdI4Iye_kHfwhDz65nilBGGGRGZYitKx5BStE7Oo5-p-CURlEvVcqNaLlXLteo8d7LePjQza36nNm4zcLECfJdtzlS21BrZq682RBdVp32S5P8b32CTjC4</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Bello, Hugo J.</creator><creator>Palomar-Ciria, Nora</creator><creator>Baca-García, Enrique</creator><creator>Lozano, Celia</creator><general>Routledge</general><general>Routledge, Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7ST</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5830-1154</orcidid><orcidid>https://orcid.org/0000-0002-2293-3106</orcidid><orcidid>https://orcid.org/0000-0002-3687-1938</orcidid></search><sort><creationdate>202310</creationdate><title>Suicide Classification for News Media Using Convolutional Neural Networks</title><author>Bello, Hugo J. ; Palomar-Ciria, Nora ; Baca-García, Enrique ; Lozano, Celia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Big Data</topic><topic>Efficacy</topic><topic>Humans</topic><topic>Mass Media</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>News media</topic><topic>Prevention</topic><topic>Prevention programs</topic><topic>Social Media</topic><topic>Suicidal behavior</topic><topic>Suicide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello, Hugo J.</creatorcontrib><creatorcontrib>Palomar-Ciria, Nora</creatorcontrib><creatorcontrib>Baca-García, Enrique</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Health communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello, Hugo J.</au><au>Palomar-Ciria, Nora</au><au>Baca-García, Enrique</au><au>Lozano, Celia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suicide Classification for News Media Using Convolutional Neural Networks</atitle><jtitle>Health communication</jtitle><addtitle>Health Commun</addtitle><date>2023-10</date><risdate>2023</risdate><volume>38</volume><issue>10</issue><spage>2178</spage><epage>2187</epage><pages>2178-2187</pages><issn>1041-0236</issn><eissn>1532-7027</eissn><abstract>Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.</abstract><cop>England</cop><pub>Routledge</pub><pmid>35532012</pmid><doi>10.1080/10410236.2022.2058686</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5830-1154</orcidid><orcidid>https://orcid.org/0000-0002-2293-3106</orcidid><orcidid>https://orcid.org/0000-0002-3687-1938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1041-0236
ispartof Health communication, 2023-10, Vol.38 (10), p.2178-2187
issn 1041-0236
1532-7027
language eng
recordid cdi_proquest_journals_2845352539
source Applied Social Sciences Index & Abstracts (ASSIA); Taylor and Francis Social Sciences and Humanities Collection
subjects Artificial Intelligence
Artificial neural networks
Big Data
Efficacy
Humans
Mass Media
Neural networks
Neural Networks, Computer
News media
Prevention
Prevention programs
Social Media
Suicidal behavior
Suicide
title Suicide Classification for News Media Using Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suicide%20Classification%20for%20News%20Media%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=Health%20communication&rft.au=Bello,%20Hugo%20J.&rft.date=2023-10&rft.volume=38&rft.issue=10&rft.spage=2178&rft.epage=2187&rft.pages=2178-2187&rft.issn=1041-0236&rft.eissn=1532-7027&rft_id=info:doi/10.1080/10410236.2022.2058686&rft_dat=%3Cproquest_pubme%3E2661488192%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-fe73f78df892a42d943e15fbbd9d13c2cc24190577604fcca1dd9bb109f95803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845352539&rft_id=info:pmid/35532012&rfr_iscdi=true