Loading…

Model interatomic potentials and lattice strain in a high-entropy alloy

A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2018-10, Vol.33 (19), p.3218-3225
Main Authors: Farkas, Diana, Caro, Alfredo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63
cites cdi_FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63
container_end_page 3225
container_issue 19
container_start_page 3218
container_title Journal of materials research
container_volume 33
creator Farkas, Diana
Caro, Alfredo
description A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.
doi_str_mv 10.1557/jmr.2018.245
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845639652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_245</cupid><sourcerecordid>2845639652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63</originalsourceid><addsrcrecordid>eNqF0EFPwyAYBmBiNHFOb_4AEq-2AgUKR7PoNJnxomdCKd1Y2lKBHfbvZdkST-rpuzzv-yUvALcYlZix-mE7hJIgLEpC2RmYEURpwSrCz8EMCUELIjG9BFcxbhHCDNV0BpZvvrU9dGOyQSc_OAMnn-yYnO4j1GMLe52SMxbGFLQbs4Qabtx6U2QU_LSHuu_9_hpcdDlhb053Dj6fnz4WL8Xqffm6eFwVhlY0FcZ2tKmbWlPDJRGyE5XmlZUdYYQJITphkWXSai6MlYw2WjCjG9FKhpuq5dUc3B17p-C_djYmtfW7MOaXigjKeCU5I38qjGXNOBcsq_ujMsHHGGynpuAGHfYKI3UYVOVB1WFQlQfNvDjymNm4tuGn9Bdfnur10ATXru0_gW85IIaj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119756685</pqid></control><display><type>article</type><title>Model interatomic potentials and lattice strain in a high-entropy alloy</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Farkas, Diana ; Caro, Alfredo</creator><creatorcontrib>Farkas, Diana ; Caro, Alfredo</creatorcontrib><description>A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.245</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Biomaterials ; Chromium ; Computer simulation ; Copper ; Deformation ; Embedded atom method ; Energy ; Entropy ; Grain size ; Heat of mixing ; High entropy alloys ; Inorganic Chemistry ; Intermetallic compounds ; Lattice strain ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Mixtures ; Nanotechnology ; Nickel ; Phase separation ; Simulation ; Solid solutions ; Strain hardening ; Temperature ; Trends ; Values</subject><ispartof>Journal of materials research, 2018-10, Vol.33 (19), p.3218-3225</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><rights>The Materials Research Society 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63</citedby><cites>FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2119756685/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2119756685?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Farkas, Diana</creatorcontrib><creatorcontrib>Caro, Alfredo</creatorcontrib><title>Model interatomic potentials and lattice strain in a high-entropy alloy</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chromium</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Deformation</subject><subject>Embedded atom method</subject><subject>Energy</subject><subject>Entropy</subject><subject>Grain size</subject><subject>Heat of mixing</subject><subject>High entropy alloys</subject><subject>Inorganic Chemistry</subject><subject>Intermetallic compounds</subject><subject>Lattice strain</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mixtures</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Phase separation</subject><subject>Simulation</subject><subject>Solid solutions</subject><subject>Strain hardening</subject><subject>Temperature</subject><subject>Trends</subject><subject>Values</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0EFPwyAYBmBiNHFOb_4AEq-2AgUKR7PoNJnxomdCKd1Y2lKBHfbvZdkST-rpuzzv-yUvALcYlZix-mE7hJIgLEpC2RmYEURpwSrCz8EMCUELIjG9BFcxbhHCDNV0BpZvvrU9dGOyQSc_OAMnn-yYnO4j1GMLe52SMxbGFLQbs4Qabtx6U2QU_LSHuu_9_hpcdDlhb053Dj6fnz4WL8Xqffm6eFwVhlY0FcZ2tKmbWlPDJRGyE5XmlZUdYYQJITphkWXSai6MlYw2WjCjG9FKhpuq5dUc3B17p-C_djYmtfW7MOaXigjKeCU5I38qjGXNOBcsq_ujMsHHGGynpuAGHfYKI3UYVOVB1WFQlQfNvDjymNm4tuGn9Bdfnur10ATXru0_gW85IIaj</recordid><startdate>20181014</startdate><enddate>20181014</enddate><creator>Farkas, Diana</creator><creator>Caro, Alfredo</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20181014</creationdate><title>Model interatomic potentials and lattice strain in a high-entropy alloy</title><author>Farkas, Diana ; Caro, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chromium</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Deformation</topic><topic>Embedded atom method</topic><topic>Energy</topic><topic>Entropy</topic><topic>Grain size</topic><topic>Heat of mixing</topic><topic>High entropy alloys</topic><topic>Inorganic Chemistry</topic><topic>Intermetallic compounds</topic><topic>Lattice strain</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mixtures</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Phase separation</topic><topic>Simulation</topic><topic>Solid solutions</topic><topic>Strain hardening</topic><topic>Temperature</topic><topic>Trends</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farkas, Diana</creatorcontrib><creatorcontrib>Caro, Alfredo</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, Diana</au><au>Caro, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model interatomic potentials and lattice strain in a high-entropy alloy</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-10-14</date><risdate>2018</risdate><volume>33</volume><issue>19</issue><spage>3218</spage><epage>3225</epage><pages>3218-3225</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.245</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2018-10, Vol.33 (19), p.3218-3225
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2845639652
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Alloys
Applied and Technical Physics
Biomaterials
Chromium
Computer simulation
Copper
Deformation
Embedded atom method
Energy
Entropy
Grain size
Heat of mixing
High entropy alloys
Inorganic Chemistry
Intermetallic compounds
Lattice strain
Materials Engineering
Materials research
Materials Science
Mechanical properties
Mixtures
Nanotechnology
Nickel
Phase separation
Simulation
Solid solutions
Strain hardening
Temperature
Trends
Values
title Model interatomic potentials and lattice strain in a high-entropy alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20interatomic%20potentials%20and%20lattice%20strain%20in%20a%20high-entropy%20alloy&rft.jtitle=Journal%20of%20materials%20research&rft.au=Farkas,%20Diana&rft.date=2018-10-14&rft.volume=33&rft.issue=19&rft.spage=3218&rft.epage=3225&rft.pages=3218-3225&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.245&rft_dat=%3Cproquest_cross%3E2845639652%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-cef4b7b7a4c69289f83a63e9f2525888f8e0e59ea68ce954ba85cab8d951b3d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2119756685&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_245&rfr_iscdi=true