Loading…
Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification
Multifeature synthetic aperture radar (SAR) ship classification aims to build models that can process, correlate, and fuse information from both handcrafted and deep features. Although handcrafted features provide rich expert knowledge, current fusion methods inadequately explore the relatively sign...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Zheng, Hao Hu, Zhigang Yang, Liu Xu, Aikun Zheng, Meiguang Zhang, Ce Li, Keqin |
description | Multifeature synthetic aperture radar (SAR) ship classification aims to build models that can process, correlate, and fuse information from both handcrafted and deep features. Although handcrafted features provide rich expert knowledge, current fusion methods inadequately explore the relatively significant role of handcrafted features in conjunction with deep features, the imbalances in feature contributions, and the cooperative ways in which features learn. In this article, we propose a novel multifeature collaborative fusion network with deep supervision (MFCFNet) to effectively fuse handcrafted features and deep features for SAR ship classification tasks. Specifically, our framework mainly includes two types of feature extraction branches, a knowledge supervision and collaboration module (KSCM) and a feature fusion and contribution assignment module (FFCA). The former module improves the quality of the feature maps learned by each branch through auxiliary feature supervision and introduces a synergy loss to facilitate the interaction of information between deep features and handcrafted features. The latter module utilizes an attention mechanism to adaptively balance the importance among various features and assign the corresponding feature contributions to the total loss function based on the generated feature weights. We conducted extensive experimental and ablation studies on two public datasets, OpenSARShip-1.0 and FUSAR-Ship, and the results show that MFCFNet is effective and outperforms single deep feature and multifeature models based on previous internal FC layer and terminal FC layer fusion. Furthermore, our proposed MFCFNet exhibits better performance than the current state-of-the-art methods. |
doi_str_mv | 10.1109/TGRS.2023.3297648 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845756458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845756458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953</originalsourceid><addsrcrecordid>eNotkLFOwzAYhC0EEqXwAGyWmFNsx3acsQq0RSogNUUMDJaT_FFdQh3spIi3J6WdbrjTne5D6JaSCaUkvV_PV_mEERZPYpYmkqszNKJCqIhIzs_RiNBURkyl7BJdhbAlhHJBkxH6eO6bztZgut4DzlzTmMJ509k94FkfrNvhF-h-nP_E77bb4AeAFud9C35v_93aeZxPVzjf2BZnjQnB1rYcCtzuGl3Upglwc9Ixeps9rrNFtHydP2XTZVTGVHYRTypVUAAjFSlMqSpGVMKgUBUMFpQVraRJS8F5RUoumFTDl3T4UstaVKmIx-ju2Nt6991D6PTW9X43TGqmuEiE5EINKXpMld6F4KHWrbdfxv9qSvSBoT4w1AeG-sQw_gPet2V3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845756458</pqid></control><display><type>article</type><title>Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification</title><source>IEEE Xplore (Online service)</source><creator>Zheng, Hao ; Hu, Zhigang ; Yang, Liu ; Xu, Aikun ; Zheng, Meiguang ; Zhang, Ce ; Li, Keqin</creator><creatorcontrib>Zheng, Hao ; Hu, Zhigang ; Yang, Liu ; Xu, Aikun ; Zheng, Meiguang ; Zhang, Ce ; Li, Keqin</creatorcontrib><description>Multifeature synthetic aperture radar (SAR) ship classification aims to build models that can process, correlate, and fuse information from both handcrafted and deep features. Although handcrafted features provide rich expert knowledge, current fusion methods inadequately explore the relatively significant role of handcrafted features in conjunction with deep features, the imbalances in feature contributions, and the cooperative ways in which features learn. In this article, we propose a novel multifeature collaborative fusion network with deep supervision (MFCFNet) to effectively fuse handcrafted features and deep features for SAR ship classification tasks. Specifically, our framework mainly includes two types of feature extraction branches, a knowledge supervision and collaboration module (KSCM) and a feature fusion and contribution assignment module (FFCA). The former module improves the quality of the feature maps learned by each branch through auxiliary feature supervision and introduces a synergy loss to facilitate the interaction of information between deep features and handcrafted features. The latter module utilizes an attention mechanism to adaptively balance the importance among various features and assign the corresponding feature contributions to the total loss function based on the generated feature weights. We conducted extensive experimental and ablation studies on two public datasets, OpenSARShip-1.0 and FUSAR-Ship, and the results show that MFCFNet is effective and outperforms single deep feature and multifeature models based on previous internal FC layer and terminal FC layer fusion. Furthermore, our proposed MFCFNet exhibits better performance than the current state-of-the-art methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297648</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Ablation ; Classification ; Collaboration ; Feature extraction ; Feature maps ; Modules ; SAR (radar) ; Ships ; Supervision ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953</citedby><cites>FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953</cites><orcidid>0000-0001-8084-5203 ; 0000-0002-5598-4348 ; 0000-0001-5100-3584 ; 0000-0001-5224-4048 ; 0000-0002-3525-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Hu, Zhigang</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Xu, Aikun</creatorcontrib><creatorcontrib>Zheng, Meiguang</creatorcontrib><creatorcontrib>Zhang, Ce</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><title>Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification</title><title>IEEE transactions on geoscience and remote sensing</title><description>Multifeature synthetic aperture radar (SAR) ship classification aims to build models that can process, correlate, and fuse information from both handcrafted and deep features. Although handcrafted features provide rich expert knowledge, current fusion methods inadequately explore the relatively significant role of handcrafted features in conjunction with deep features, the imbalances in feature contributions, and the cooperative ways in which features learn. In this article, we propose a novel multifeature collaborative fusion network with deep supervision (MFCFNet) to effectively fuse handcrafted features and deep features for SAR ship classification tasks. Specifically, our framework mainly includes two types of feature extraction branches, a knowledge supervision and collaboration module (KSCM) and a feature fusion and contribution assignment module (FFCA). The former module improves the quality of the feature maps learned by each branch through auxiliary feature supervision and introduces a synergy loss to facilitate the interaction of information between deep features and handcrafted features. The latter module utilizes an attention mechanism to adaptively balance the importance among various features and assign the corresponding feature contributions to the total loss function based on the generated feature weights. We conducted extensive experimental and ablation studies on two public datasets, OpenSARShip-1.0 and FUSAR-Ship, and the results show that MFCFNet is effective and outperforms single deep feature and multifeature models based on previous internal FC layer and terminal FC layer fusion. Furthermore, our proposed MFCFNet exhibits better performance than the current state-of-the-art methods.</description><subject>Ablation</subject><subject>Classification</subject><subject>Collaboration</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Modules</subject><subject>SAR (radar)</subject><subject>Ships</subject><subject>Supervision</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAYhC0EEqXwAGyWmFNsx3acsQq0RSogNUUMDJaT_FFdQh3spIi3J6WdbrjTne5D6JaSCaUkvV_PV_mEERZPYpYmkqszNKJCqIhIzs_RiNBURkyl7BJdhbAlhHJBkxH6eO6bztZgut4DzlzTmMJ509k94FkfrNvhF-h-nP_E77bb4AeAFud9C35v_93aeZxPVzjf2BZnjQnB1rYcCtzuGl3Upglwc9Ixeps9rrNFtHydP2XTZVTGVHYRTypVUAAjFSlMqSpGVMKgUBUMFpQVraRJS8F5RUoumFTDl3T4UstaVKmIx-ju2Nt6991D6PTW9X43TGqmuEiE5EINKXpMld6F4KHWrbdfxv9qSvSBoT4w1AeG-sQw_gPet2V3</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zheng, Hao</creator><creator>Hu, Zhigang</creator><creator>Yang, Liu</creator><creator>Xu, Aikun</creator><creator>Zheng, Meiguang</creator><creator>Zhang, Ce</creator><creator>Li, Keqin</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8084-5203</orcidid><orcidid>https://orcid.org/0000-0002-5598-4348</orcidid><orcidid>https://orcid.org/0000-0001-5100-3584</orcidid><orcidid>https://orcid.org/0000-0001-5224-4048</orcidid><orcidid>https://orcid.org/0000-0002-3525-0339</orcidid></search><sort><creationdate>2023</creationdate><title>Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification</title><author>Zheng, Hao ; Hu, Zhigang ; Yang, Liu ; Xu, Aikun ; Zheng, Meiguang ; Zhang, Ce ; Li, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Classification</topic><topic>Collaboration</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Modules</topic><topic>SAR (radar)</topic><topic>Ships</topic><topic>Supervision</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Hu, Zhigang</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Xu, Aikun</creatorcontrib><creatorcontrib>Zheng, Meiguang</creatorcontrib><creatorcontrib>Zhang, Ce</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hao</au><au>Hu, Zhigang</au><au>Yang, Liu</au><au>Xu, Aikun</au><au>Zheng, Meiguang</au><au>Zhang, Ce</au><au>Li, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>Multifeature synthetic aperture radar (SAR) ship classification aims to build models that can process, correlate, and fuse information from both handcrafted and deep features. Although handcrafted features provide rich expert knowledge, current fusion methods inadequately explore the relatively significant role of handcrafted features in conjunction with deep features, the imbalances in feature contributions, and the cooperative ways in which features learn. In this article, we propose a novel multifeature collaborative fusion network with deep supervision (MFCFNet) to effectively fuse handcrafted features and deep features for SAR ship classification tasks. Specifically, our framework mainly includes two types of feature extraction branches, a knowledge supervision and collaboration module (KSCM) and a feature fusion and contribution assignment module (FFCA). The former module improves the quality of the feature maps learned by each branch through auxiliary feature supervision and introduces a synergy loss to facilitate the interaction of information between deep features and handcrafted features. The latter module utilizes an attention mechanism to adaptively balance the importance among various features and assign the corresponding feature contributions to the total loss function based on the generated feature weights. We conducted extensive experimental and ablation studies on two public datasets, OpenSARShip-1.0 and FUSAR-Ship, and the results show that MFCFNet is effective and outperforms single deep feature and multifeature models based on previous internal FC layer and terminal FC layer fusion. Furthermore, our proposed MFCFNet exhibits better performance than the current state-of-the-art methods.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2023.3297648</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8084-5203</orcidid><orcidid>https://orcid.org/0000-0002-5598-4348</orcidid><orcidid>https://orcid.org/0000-0001-5100-3584</orcidid><orcidid>https://orcid.org/0000-0001-5224-4048</orcidid><orcidid>https://orcid.org/0000-0002-3525-0339</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2845756458 |
source | IEEE Xplore (Online service) |
subjects | Ablation Classification Collaboration Feature extraction Feature maps Modules SAR (radar) Ships Supervision Synthetic aperture radar |
title | Multifeature Collaborative Fusion Network With Deep Supervision for SAR Ship Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifeature%20Collaborative%20Fusion%20Network%20With%20Deep%20Supervision%20for%20SAR%20Ship%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Hao&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2023.3297648&rft_dat=%3Cproquest_cross%3E2845756458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-47d8b1eea680bac8d20872eb8de47decd1d6a9c544d0c452681969289f6f5d953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845756458&rft_id=info:pmid/&rfr_iscdi=true |