Loading…
Graphite resistive heated diamond anvil cell for simultaneous high-pressure and high-temperature diffraction experiments
High-pressure and high-temperature experiments using a resistively heated diamond anvil cell have the advantage of heating samples homogeneously with precise temperature control. Here, we present the design and performance of a graphite resistive heated diamond anvil cell (GRHDAC) setup for powder a...
Saved in:
Published in: | Review of scientific instruments 2023-08, Vol.94 (8) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-pressure and high-temperature experiments using a resistively heated diamond anvil cell have the advantage of heating samples homogeneously with precise temperature control. Here, we present the design and performance of a graphite resistive heated diamond anvil cell (GRHDAC) setup for powder and single-crystal x-ray diffraction experiments developed at the Extreme Conditions Beamline (P02.2) at PETRA III, Hamburg, Germany. In the GRHDAC, temperatures up to 2000 K can be generated at high pressures by placing it in a water-cooled vacuum chamber. Temperature estimates from thermocouple measurements are within +/−35 K at the sample position up to 800 K and within +90 K between 800 and 1400 K when using a standard seat combination of cBN and WC. Isothermal compression at high temperatures can be achieved by employing a remote membrane control system. The advantage of the GRHDAC is demonstrated through the study of geophysical processes in the Earth’s crust and upper mantle region. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0132981 |