Loading…
QUEST: Query Stream for Practical Cooperative Perception
Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of...
Saved in:
Published in: | arXiv.org 2024-05 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fan, Siqi Yu, Haibao Yang, Wenxian Yuan, Jirui Nie, Zaiqing |
description | Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2845954571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845954571</sourcerecordid><originalsourceid>FETCH-proquest_journals_28459545713</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhfltS-sqRkdFO8uQT1DMrW8z6N_XoR_Q6T0874ZFIGWa5Apgx2LvJyEEnDLQWkYsr-9l0154vSK9eRMIzYMPlnhFpg9jb2ZeWOuQTBhfyCukHl0Y7XJg28HMHuNf9-x4LdviljiyzxV96Ca70vKlDnKlz1rpLJX_XR_yoDWj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845954571</pqid></control><display><type>article</type><title>QUEST: Query Stream for Practical Cooperative Perception</title><source>Publicly Available Content Database</source><creator>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</creator><creatorcontrib>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</creatorcontrib><description>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cooperation ; Infrastructure ; Perception ; Queries</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2845954571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Fan, Siqi</creatorcontrib><creatorcontrib>Yu, Haibao</creatorcontrib><creatorcontrib>Yang, Wenxian</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Nie, Zaiqing</creatorcontrib><title>QUEST: Query Stream for Practical Cooperative Perception</title><title>arXiv.org</title><description>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</description><subject>Cooperation</subject><subject>Infrastructure</subject><subject>Perception</subject><subject>Queries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhfltS-sqRkdFO8uQT1DMrW8z6N_XoR_Q6T0874ZFIGWa5Apgx2LvJyEEnDLQWkYsr-9l0154vSK9eRMIzYMPlnhFpg9jb2ZeWOuQTBhfyCukHl0Y7XJg28HMHuNf9-x4LdviljiyzxV96Ca70vKlDnKlz1rpLJX_XR_yoDWj</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Fan, Siqi</creator><creator>Yu, Haibao</creator><creator>Yang, Wenxian</creator><creator>Yuan, Jirui</creator><creator>Nie, Zaiqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>QUEST: Query Stream for Practical Cooperative Perception</title><author>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28459545713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cooperation</topic><topic>Infrastructure</topic><topic>Perception</topic><topic>Queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Siqi</creatorcontrib><creatorcontrib>Yu, Haibao</creatorcontrib><creatorcontrib>Yang, Wenxian</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Nie, Zaiqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Siqi</au><au>Yu, Haibao</au><au>Yang, Wenxian</au><au>Yuan, Jirui</au><au>Nie, Zaiqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>QUEST: Query Stream for Practical Cooperative Perception</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2845954571 |
source | Publicly Available Content Database |
subjects | Cooperation Infrastructure Perception Queries |
title | QUEST: Query Stream for Practical Cooperative Perception |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=QUEST:%20Query%20Stream%20for%20Practical%20Cooperative%20Perception&rft.jtitle=arXiv.org&rft.au=Fan,%20Siqi&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2845954571%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28459545713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845954571&rft_id=info:pmid/&rfr_iscdi=true |