Loading…

QUEST: Query Stream for Practical Cooperative Perception

Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Fan, Siqi, Yu, Haibao, Yang, Wenxian, Yuan, Jirui, Nie, Zaiqing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fan, Siqi
Yu, Haibao
Yang, Wenxian
Yuan, Jirui
Nie, Zaiqing
description Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2845954571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845954571</sourcerecordid><originalsourceid>FETCH-proquest_journals_28459545713</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhfltS-sqRkdFO8uQT1DMrW8z6N_XoR_Q6T0874ZFIGWa5Apgx2LvJyEEnDLQWkYsr-9l0154vSK9eRMIzYMPlnhFpg9jb2ZeWOuQTBhfyCukHl0Y7XJg28HMHuNf9-x4LdviljiyzxV96Ca70vKlDnKlz1rpLJX_XR_yoDWj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845954571</pqid></control><display><type>article</type><title>QUEST: Query Stream for Practical Cooperative Perception</title><source>Publicly Available Content Database</source><creator>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</creator><creatorcontrib>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</creatorcontrib><description>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cooperation ; Infrastructure ; Perception ; Queries</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2845954571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Fan, Siqi</creatorcontrib><creatorcontrib>Yu, Haibao</creatorcontrib><creatorcontrib>Yang, Wenxian</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Nie, Zaiqing</creatorcontrib><title>QUEST: Query Stream for Practical Cooperative Perception</title><title>arXiv.org</title><description>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</description><subject>Cooperation</subject><subject>Infrastructure</subject><subject>Perception</subject><subject>Queries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhfltS-sqRkdFO8uQT1DMrW8z6N_XoR_Q6T0874ZFIGWa5Apgx2LvJyEEnDLQWkYsr-9l0154vSK9eRMIzYMPlnhFpg9jb2ZeWOuQTBhfyCukHl0Y7XJg28HMHuNf9-x4LdviljiyzxV96Ca70vKlDnKlz1rpLJX_XR_yoDWj</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Fan, Siqi</creator><creator>Yu, Haibao</creator><creator>Yang, Wenxian</creator><creator>Yuan, Jirui</creator><creator>Nie, Zaiqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>QUEST: Query Stream for Practical Cooperative Perception</title><author>Fan, Siqi ; Yu, Haibao ; Yang, Wenxian ; Yuan, Jirui ; Nie, Zaiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28459545713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cooperation</topic><topic>Infrastructure</topic><topic>Perception</topic><topic>Queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Siqi</creatorcontrib><creatorcontrib>Yu, Haibao</creatorcontrib><creatorcontrib>Yang, Wenxian</creatorcontrib><creatorcontrib>Yuan, Jirui</creatorcontrib><creatorcontrib>Nie, Zaiqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Siqi</au><au>Yu, Haibao</au><au>Yang, Wenxian</au><au>Yuan, Jirui</au><au>Nie, Zaiqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>QUEST: Query Stream for Practical Cooperative Perception</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cooperative perception can effectively enhance individual perception performance by providing additional viewpoint and expanding the sensing field. Existing cooperation paradigms are either interpretable (result cooperation) or flexible (feature cooperation). In this paper, we propose the concept of query cooperation to enable interpretable instance-level flexible feature interaction. To specifically explain the concept, we propose a cooperative perception framework, termed QUEST, which let query stream flow among agents. The cross-agent queries are interacted via fusion for co-aware instances and complementation for individual unaware instances. Taking camera-based vehicle-infrastructure perception as a typical practical application scene, the experimental results on the real-world dataset, DAIR-V2X-Seq, demonstrate the effectiveness of QUEST and further reveal the advantage of the query cooperation paradigm on transmission flexibility and robustness to packet dropout. We hope our work can further facilitate the cross-agent representation interaction for better cooperative perception in practice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2845954571
source Publicly Available Content Database
subjects Cooperation
Infrastructure
Perception
Queries
title QUEST: Query Stream for Practical Cooperative Perception
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=QUEST:%20Query%20Stream%20for%20Practical%20Cooperative%20Perception&rft.jtitle=arXiv.org&rft.au=Fan,%20Siqi&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2845954571%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28459545713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845954571&rft_id=info:pmid/&rfr_iscdi=true