Loading…

Heat Kernels for a Class of Hybrid Evolution Equations

The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled....

Full description

Saved in:
Bibliographic Details
Published in:Potential analysis 2023-08, Vol.59 (2), p.823-856
Main Authors: Garofalo, Nicola, Tralli, Giulio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533
cites cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533
container_end_page 856
container_issue 2
container_start_page 823
container_title Potential analysis
container_volume 59
creator Garofalo, Nicola
Tralli, Giulio
description The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L 1 − ∂ t and L 2 − ∂ t . Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.
doi_str_mv 10.1007/s11118-022-10003-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847854559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847854559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA52gyadPkKKW64oIXBW8h2yTSpTa7SSvs25u1gjfnMjPw_TPwIXTN6C2jtLpLLJckFIDknXICJ2jBygqIAvV-ihZUgSAgKDtHFyltMwNVJRdIrJwZ8bOLg-sT9iFig-vepISDx6vDJnYWN1-hn8YuDLjZT-Y4pEt05k2f3NVvX6K3h-a1XpH1y-NTfb8mLRd8JKq0jkqgynqwVvqCs8JRUVhhmWQgBBgLnm6YF5JJrtrWcF4VDphxAkrOl-hmvruLYT-5NOptmOKQX2qQRSXLoixVpmCm2hhSis7rXew-TTxoRvXRj5796OxH__jRkEN8DqUMDx8u_p3-J_UNqVhl2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847854559</pqid></control><display><type>article</type><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><source>Springer Nature</source><creator>Garofalo, Nicola ; Tralli, Giulio</creator><creatorcontrib>Garofalo, Nicola ; Tralli, Giulio</creatorcontrib><description>The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L 1 − ∂ t and L 2 − ∂ t . Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10003-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential equations ; Evolution ; Functional Analysis ; Geometry ; Kernels ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2023-08, Vol.59 (2), p.823-856</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</citedby><cites>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garofalo, Nicola</creatorcontrib><creatorcontrib>Tralli, Giulio</creatorcontrib><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L 1 − ∂ t and L 2 − ∂ t . Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</description><subject>Differential equations</subject><subject>Evolution</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA52gyadPkKKW64oIXBW8h2yTSpTa7SSvs25u1gjfnMjPw_TPwIXTN6C2jtLpLLJckFIDknXICJ2jBygqIAvV-ihZUgSAgKDtHFyltMwNVJRdIrJwZ8bOLg-sT9iFig-vepISDx6vDJnYWN1-hn8YuDLjZT-Y4pEt05k2f3NVvX6K3h-a1XpH1y-NTfb8mLRd8JKq0jkqgynqwVvqCs8JRUVhhmWQgBBgLnm6YF5JJrtrWcF4VDphxAkrOl-hmvruLYT-5NOptmOKQX2qQRSXLoixVpmCm2hhSis7rXew-TTxoRvXRj5796OxH__jRkEN8DqUMDx8u_p3-J_UNqVhl2w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Garofalo, Nicola</creator><creator>Tralli, Giulio</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><author>Garofalo, Nicola ; Tralli, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Evolution</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garofalo, Nicola</creatorcontrib><creatorcontrib>Tralli, Giulio</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garofalo, Nicola</au><au>Tralli, Giulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Kernels for a Class of Hybrid Evolution Equations</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>823</spage><epage>856</epage><pages>823-856</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L 1 − ∂ t and L 2 − ∂ t . Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10003-2</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2023-08, Vol.59 (2), p.823-856
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2847854559
source Springer Nature
subjects Differential equations
Evolution
Functional Analysis
Geometry
Kernels
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Potential Theory
Probability Theory and Stochastic Processes
title Heat Kernels for a Class of Hybrid Evolution Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Kernels%20for%20a%20Class%20of%20Hybrid%20Evolution%20Equations&rft.jtitle=Potential%20analysis&rft.au=Garofalo,%20Nicola&rft.date=2023-08-01&rft.volume=59&rft.issue=2&rft.spage=823&rft.epage=856&rft.pages=823-856&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10003-2&rft_dat=%3Cproquest_cross%3E2847854559%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847854559&rft_id=info:pmid/&rfr_iscdi=true