Loading…
Heat Kernels for a Class of Hybrid Evolution Equations
The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L 1 + L 2 − ∂ t , but the variables cannot be decoupled....
Saved in:
Published in: | Potential analysis 2023-08, Vol.59 (2), p.823-856 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533 |
container_end_page | 856 |
container_issue | 2 |
container_start_page | 823 |
container_title | Potential analysis |
container_volume | 59 |
creator | Garofalo, Nicola Tralli, Giulio |
description | The aim of this paper is to construct (explicit) heat kernels for some
hybrid
evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form
L
1
+
L
2
−
∂
t
, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators
L
1
−
∂
t
and
L
2
−
∂
t
. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity. |
doi_str_mv | 10.1007/s11118-022-10003-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847854559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847854559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA52gyadPkKKW64oIXBW8h2yTSpTa7SSvs25u1gjfnMjPw_TPwIXTN6C2jtLpLLJckFIDknXICJ2jBygqIAvV-ihZUgSAgKDtHFyltMwNVJRdIrJwZ8bOLg-sT9iFig-vepISDx6vDJnYWN1-hn8YuDLjZT-Y4pEt05k2f3NVvX6K3h-a1XpH1y-NTfb8mLRd8JKq0jkqgynqwVvqCs8JRUVhhmWQgBBgLnm6YF5JJrtrWcF4VDphxAkrOl-hmvruLYT-5NOptmOKQX2qQRSXLoixVpmCm2hhSis7rXew-TTxoRvXRj5796OxH__jRkEN8DqUMDx8u_p3-J_UNqVhl2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847854559</pqid></control><display><type>article</type><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><source>Springer Nature</source><creator>Garofalo, Nicola ; Tralli, Giulio</creator><creatorcontrib>Garofalo, Nicola ; Tralli, Giulio</creatorcontrib><description>The aim of this paper is to construct (explicit) heat kernels for some
hybrid
evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form
L
1
+
L
2
−
∂
t
, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators
L
1
−
∂
t
and
L
2
−
∂
t
. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10003-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential equations ; Evolution ; Functional Analysis ; Geometry ; Kernels ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2023-08, Vol.59 (2), p.823-856</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</citedby><cites>FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Garofalo, Nicola</creatorcontrib><creatorcontrib>Tralli, Giulio</creatorcontrib><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>The aim of this paper is to construct (explicit) heat kernels for some
hybrid
evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form
L
1
+
L
2
−
∂
t
, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators
L
1
−
∂
t
and
L
2
−
∂
t
. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</description><subject>Differential equations</subject><subject>Evolution</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA52gyadPkKKW64oIXBW8h2yTSpTa7SSvs25u1gjfnMjPw_TPwIXTN6C2jtLpLLJckFIDknXICJ2jBygqIAvV-ihZUgSAgKDtHFyltMwNVJRdIrJwZ8bOLg-sT9iFig-vepISDx6vDJnYWN1-hn8YuDLjZT-Y4pEt05k2f3NVvX6K3h-a1XpH1y-NTfb8mLRd8JKq0jkqgynqwVvqCs8JRUVhhmWQgBBgLnm6YF5JJrtrWcF4VDphxAkrOl-hmvruLYT-5NOptmOKQX2qQRSXLoixVpmCm2hhSis7rXew-TTxoRvXRj5796OxH__jRkEN8DqUMDx8u_p3-J_UNqVhl2w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Garofalo, Nicola</creator><creator>Tralli, Giulio</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Heat Kernels for a Class of Hybrid Evolution Equations</title><author>Garofalo, Nicola ; Tralli, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Evolution</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garofalo, Nicola</creatorcontrib><creatorcontrib>Tralli, Giulio</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garofalo, Nicola</au><au>Tralli, Giulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Kernels for a Class of Hybrid Evolution Equations</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>823</spage><epage>856</epage><pages>823-856</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>The aim of this paper is to construct (explicit) heat kernels for some
hybrid
evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form
L
1
+
L
2
−
∂
t
, but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators
L
1
−
∂
t
and
L
2
−
∂
t
. Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s 1967 groundbreaking paper on hypoellipticity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10003-2</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2023-08, Vol.59 (2), p.823-856 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_2847854559 |
source | Springer Nature |
subjects | Differential equations Evolution Functional Analysis Geometry Kernels Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Potential Theory Probability Theory and Stochastic Processes |
title | Heat Kernels for a Class of Hybrid Evolution Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Kernels%20for%20a%20Class%20of%20Hybrid%20Evolution%20Equations&rft.jtitle=Potential%20analysis&rft.au=Garofalo,%20Nicola&rft.date=2023-08-01&rft.volume=59&rft.issue=2&rft.spage=823&rft.epage=856&rft.pages=823-856&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10003-2&rft_dat=%3Cproquest_cross%3E2847854559%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-95de08209df2dd8f4314e064d6d1812662ad2f0b1f681839cca3374e21ae62533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847854559&rft_id=info:pmid/&rfr_iscdi=true |