Loading…
Yet another Freiheitssatz: Mating finite groups with locally indicable ones
The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).
Saved in:
Published in: | Glasgow mathematical journal 2023-05, Vol.65 (2), p.337-344 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3 |
container_end_page | 344 |
container_issue | 2 |
container_start_page | 337 |
container_title | Glasgow mathematical journal |
container_volume | 65 |
creator | Klyachko, Anton A. Mikheenko, Mikhail A. |
description | The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930). |
doi_str_mv | 10.1017/S0017089522000349 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848144673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089522000349</cupid><sourcerecordid>2848144673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLgnP4AbwHP1Xy1abzJcCpOPLiDnkqavN0yumYmGTJ_vS0beBAv78vD8wUPQpeUXFNC5c0b6S8pVc4YIYQLdYRGVBQqy4l6P0ajgc4G_hSdxbjqIe_RCD1_QMK682kJAU8DuCW4FKNO37f4RSfXLXDjOpcAL4LfbiL-cmmJW2902-6w66wzum4B-w7iOTppdBvh4vDHaD69n08es9nrw9PkbpYZTmXKSiJsXmjZ5JxRAZATm9eaARRE1FrlpmhAlJYaKimTUlnDGltzI2xtVGH5GF3tYzfBf24hpmrlt6HrGytWipIKUUjeq-heZYKPMUBTbYJb67CrKKmGyao_k_UefvDodR2cXcBv9P-uH9YcbhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848144673</pqid></control><display><type>article</type><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><source>Cambridge Journals Online</source><creator>Klyachko, Anton A. ; Mikheenko, Mikhail A.</creator><creatorcontrib>Klyachko, Anton A. ; Mikheenko, Mikhail A.</creatorcontrib><description>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089522000349</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Theorems</subject><ispartof>Glasgow mathematical journal, 2023-05, Vol.65 (2), p.337-344</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</citedby><cites>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089522000349/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Klyachko, Anton A.</creatorcontrib><creatorcontrib>Mikheenko, Mikhail A.</creatorcontrib><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</description><subject>Theorems</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LwzAYDqLgnP4AbwHP1Xy1abzJcCpOPLiDnkqavN0yumYmGTJ_vS0beBAv78vD8wUPQpeUXFNC5c0b6S8pVc4YIYQLdYRGVBQqy4l6P0ajgc4G_hSdxbjqIe_RCD1_QMK682kJAU8DuCW4FKNO37f4RSfXLXDjOpcAL4LfbiL-cmmJW2902-6w66wzum4B-w7iOTppdBvh4vDHaD69n08es9nrw9PkbpYZTmXKSiJsXmjZ5JxRAZATm9eaARRE1FrlpmhAlJYaKimTUlnDGltzI2xtVGH5GF3tYzfBf24hpmrlt6HrGytWipIKUUjeq-heZYKPMUBTbYJb67CrKKmGyao_k_UefvDodR2cXcBv9P-uH9YcbhE</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Klyachko, Anton A.</creator><creator>Mikheenko, Mikhail A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230501</creationdate><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><author>Klyachko, Anton A. ; Mikheenko, Mikhail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klyachko, Anton A.</creatorcontrib><creatorcontrib>Mikheenko, Mikhail A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klyachko, Anton A.</au><au>Mikheenko, Mikhail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>65</volume><issue>2</issue><spage>337</spage><epage>344</epage><pages>337-344</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089522000349</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2023-05, Vol.65 (2), p.337-344 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_2848144673 |
source | Cambridge Journals Online |
subjects | Theorems |
title | Yet another Freiheitssatz: Mating finite groups with locally indicable ones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yet%20another%20Freiheitssatz:%20Mating%20finite%20groups%20with%20locally%20indicable%20ones&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Klyachko,%20Anton%20A.&rft.date=2023-05-01&rft.volume=65&rft.issue=2&rft.spage=337&rft.epage=344&rft.pages=337-344&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089522000349&rft_dat=%3Cproquest_cross%3E2848144673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848144673&rft_id=info:pmid/&rft_cupid=10_1017_S0017089522000349&rfr_iscdi=true |