Loading…

Yet another Freiheitssatz: Mating finite groups with locally indicable ones

The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).

Saved in:
Bibliographic Details
Published in:Glasgow mathematical journal 2023-05, Vol.65 (2), p.337-344
Main Authors: Klyachko, Anton A., Mikheenko, Mikhail A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3
cites cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3
container_end_page 344
container_issue 2
container_start_page 337
container_title Glasgow mathematical journal
container_volume 65
creator Klyachko, Anton A.
Mikheenko, Mikhail A.
description The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).
doi_str_mv 10.1017/S0017089522000349
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848144673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089522000349</cupid><sourcerecordid>2848144673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLgnP4AbwHP1Xy1abzJcCpOPLiDnkqavN0yumYmGTJ_vS0beBAv78vD8wUPQpeUXFNC5c0b6S8pVc4YIYQLdYRGVBQqy4l6P0ajgc4G_hSdxbjqIe_RCD1_QMK682kJAU8DuCW4FKNO37f4RSfXLXDjOpcAL4LfbiL-cmmJW2902-6w66wzum4B-w7iOTppdBvh4vDHaD69n08es9nrw9PkbpYZTmXKSiJsXmjZ5JxRAZATm9eaARRE1FrlpmhAlJYaKimTUlnDGltzI2xtVGH5GF3tYzfBf24hpmrlt6HrGytWipIKUUjeq-heZYKPMUBTbYJb67CrKKmGyao_k_UefvDodR2cXcBv9P-uH9YcbhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848144673</pqid></control><display><type>article</type><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><source>Cambridge Journals Online</source><creator>Klyachko, Anton A. ; Mikheenko, Mikhail A.</creator><creatorcontrib>Klyachko, Anton A. ; Mikheenko, Mikhail A.</creatorcontrib><description>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089522000349</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Theorems</subject><ispartof>Glasgow mathematical journal, 2023-05, Vol.65 (2), p.337-344</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</citedby><cites>FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089522000349/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Klyachko, Anton A.</creatorcontrib><creatorcontrib>Mikheenko, Mikhail A.</creatorcontrib><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</description><subject>Theorems</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LwzAYDqLgnP4AbwHP1Xy1abzJcCpOPLiDnkqavN0yumYmGTJ_vS0beBAv78vD8wUPQpeUXFNC5c0b6S8pVc4YIYQLdYRGVBQqy4l6P0ajgc4G_hSdxbjqIe_RCD1_QMK682kJAU8DuCW4FKNO37f4RSfXLXDjOpcAL4LfbiL-cmmJW2902-6w66wzum4B-w7iOTppdBvh4vDHaD69n08es9nrw9PkbpYZTmXKSiJsXmjZ5JxRAZATm9eaARRE1FrlpmhAlJYaKimTUlnDGltzI2xtVGH5GF3tYzfBf24hpmrlt6HrGytWipIKUUjeq-heZYKPMUBTbYJb67CrKKmGyao_k_UefvDodR2cXcBv9P-uH9YcbhE</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Klyachko, Anton A.</creator><creator>Mikheenko, Mikhail A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230501</creationdate><title>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</title><author>Klyachko, Anton A. ; Mikheenko, Mikhail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klyachko, Anton A.</creatorcontrib><creatorcontrib>Mikheenko, Mikhail A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klyachko, Anton A.</au><au>Mikheenko, Mikhail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yet another Freiheitssatz: Mating finite groups with locally indicable ones</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>65</volume><issue>2</issue><spage>337</spage><epage>344</epage><pages>337-344</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089522000349</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2023-05, Vol.65 (2), p.337-344
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_2848144673
source Cambridge Journals Online
subjects Theorems
title Yet another Freiheitssatz: Mating finite groups with locally indicable ones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yet%20another%20Freiheitssatz:%20Mating%20finite%20groups%20with%20locally%20indicable%20ones&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Klyachko,%20Anton%20A.&rft.date=2023-05-01&rft.volume=65&rft.issue=2&rft.spage=337&rft.epage=344&rft.pages=337-344&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089522000349&rft_dat=%3Cproquest_cross%3E2848144673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-804d56a7f53214ee50d5ba2ee604ba95c6fe48d1c1712779dc2fdb3c4dbc96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848144673&rft_id=info:pmid/&rft_cupid=10_1017_S0017089522000349&rfr_iscdi=true