Loading…
Realization of an optical nanostructure 4×1 multiplexer based on metal-insulator-metal plasmonic waveguides
The optical multiplexer was created at a nanoscale plasmonic structure utilizing the finite element method (FEM) with COMSOL version 5.5 software to enable maximum light confinement, high-speed optical systems, and a tiny structure. The metal-insulator-metal technology at a nanoscale dimension is us...
Saved in:
Published in: | Applied optics (2004) 2023-08, Vol.62 (23), p.6163 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical multiplexer was created at a nanoscale plasmonic structure utilizing the finite element method (FEM) with COMSOL version 5.5 software to enable maximum light confinement, high-speed optical systems, and a tiny structure. The metal-insulator-metal technology at a nanoscale dimension is used for creating the 4×1 multiplexer. In this design, the transmission threshold ( T threshold ) is selected to be 100% for separating between logic “1” and logic “0” at a 1310 nm operating wavelength. The modulation depth (MD), contrast ratio (CR), and insertion loss (IL) characteristics were explained to evaluate the performance of the multiplexer. The CR has 3.48 dB, the MD offers an ideal performance with 95.28 %, and the IL has 3.31 dB. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.497810 |