Loading…

High-dimensional broadband non-Abelian holonomy in silicon nitride photonics

Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum co...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-08
Main Authors: Chen, Youlv, Guo, Xuhan, Zhang, Xulin, Su, Yikai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Youlv
Guo, Xuhan
Zhang, Xulin
Su, Yikai
description Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850382389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850382389</sourcerecordid><originalsourceid>FETCH-proquest_journals_28503823893</originalsourceid><addsrcrecordid>eNqNzbEKwjAQgOEgCBbtOwScAzGxWkcRpYOju6RNtFfSu5prB99eBx_A6V8--GciM9ZuVLk1ZiFy5k5rbXZ7UxQ2E9cKnq3y0AdkIHRR1omcrx16iYTqWIcIDmVLkZD6twSUDBEaQokwJvBBDi2NhNDwSswfLnLIf12K9eV8O1VqSPSaAo_3jqb0nfDdlIW2pbHlwf6nPoyAPhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850382389</pqid></control><display><type>article</type><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</creator><creatorcontrib>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</creatorcontrib><description>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broadband ; Hilbert space ; Multilayers ; Photonics ; Quantum computing ; Silicon nitride</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2850382389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chen, Youlv</creatorcontrib><creatorcontrib>Guo, Xuhan</creatorcontrib><creatorcontrib>Zhang, Xulin</creatorcontrib><creatorcontrib>Su, Yikai</creatorcontrib><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><title>arXiv.org</title><description>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</description><subject>Broadband</subject><subject>Hilbert space</subject><subject>Multilayers</subject><subject>Photonics</subject><subject>Quantum computing</subject><subject>Silicon nitride</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzbEKwjAQgOEgCBbtOwScAzGxWkcRpYOju6RNtFfSu5prB99eBx_A6V8--GciM9ZuVLk1ZiFy5k5rbXZ7UxQ2E9cKnq3y0AdkIHRR1omcrx16iYTqWIcIDmVLkZD6twSUDBEaQokwJvBBDi2NhNDwSswfLnLIf12K9eV8O1VqSPSaAo_3jqb0nfDdlIW2pbHlwf6nPoyAPhU</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>Chen, Youlv</creator><creator>Guo, Xuhan</creator><creator>Zhang, Xulin</creator><creator>Su, Yikai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230811</creationdate><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><author>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28503823893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broadband</topic><topic>Hilbert space</topic><topic>Multilayers</topic><topic>Photonics</topic><topic>Quantum computing</topic><topic>Silicon nitride</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youlv</creatorcontrib><creatorcontrib>Guo, Xuhan</creatorcontrib><creatorcontrib>Zhang, Xulin</creatorcontrib><creatorcontrib>Su, Yikai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youlv</au><au>Guo, Xuhan</au><au>Zhang, Xulin</au><au>Su, Yikai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</atitle><jtitle>arXiv.org</jtitle><date>2023-08-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2850382389
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Broadband
Hilbert space
Multilayers
Photonics
Quantum computing
Silicon nitride
title High-dimensional broadband non-Abelian holonomy in silicon nitride photonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High-dimensional%20broadband%20non-Abelian%20holonomy%20in%20silicon%20nitride%20photonics&rft.jtitle=arXiv.org&rft.au=Chen,%20Youlv&rft.date=2023-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850382389%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28503823893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2850382389&rft_id=info:pmid/&rfr_iscdi=true