Loading…
High-dimensional broadband non-Abelian holonomy in silicon nitride photonics
Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum co...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Youlv Guo, Xuhan Zhang, Xulin Su, Yikai |
description | Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850382389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850382389</sourcerecordid><originalsourceid>FETCH-proquest_journals_28503823893</originalsourceid><addsrcrecordid>eNqNzbEKwjAQgOEgCBbtOwScAzGxWkcRpYOju6RNtFfSu5prB99eBx_A6V8--GciM9ZuVLk1ZiFy5k5rbXZ7UxQ2E9cKnq3y0AdkIHRR1omcrx16iYTqWIcIDmVLkZD6twSUDBEaQokwJvBBDi2NhNDwSswfLnLIf12K9eV8O1VqSPSaAo_3jqb0nfDdlIW2pbHlwf6nPoyAPhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850382389</pqid></control><display><type>article</type><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</creator><creatorcontrib>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</creatorcontrib><description>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broadband ; Hilbert space ; Multilayers ; Photonics ; Quantum computing ; Silicon nitride</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2850382389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chen, Youlv</creatorcontrib><creatorcontrib>Guo, Xuhan</creatorcontrib><creatorcontrib>Zhang, Xulin</creatorcontrib><creatorcontrib>Su, Yikai</creatorcontrib><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><title>arXiv.org</title><description>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</description><subject>Broadband</subject><subject>Hilbert space</subject><subject>Multilayers</subject><subject>Photonics</subject><subject>Quantum computing</subject><subject>Silicon nitride</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzbEKwjAQgOEgCBbtOwScAzGxWkcRpYOju6RNtFfSu5prB99eBx_A6V8--GciM9ZuVLk1ZiFy5k5rbXZ7UxQ2E9cKnq3y0AdkIHRR1omcrx16iYTqWIcIDmVLkZD6twSUDBEaQokwJvBBDi2NhNDwSswfLnLIf12K9eV8O1VqSPSaAo_3jqb0nfDdlIW2pbHlwf6nPoyAPhU</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>Chen, Youlv</creator><creator>Guo, Xuhan</creator><creator>Zhang, Xulin</creator><creator>Su, Yikai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230811</creationdate><title>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</title><author>Chen, Youlv ; Guo, Xuhan ; Zhang, Xulin ; Su, Yikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28503823893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broadband</topic><topic>Hilbert space</topic><topic>Multilayers</topic><topic>Photonics</topic><topic>Quantum computing</topic><topic>Silicon nitride</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youlv</creatorcontrib><creatorcontrib>Guo, Xuhan</creatorcontrib><creatorcontrib>Zhang, Xulin</creatorcontrib><creatorcontrib>Su, Yikai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youlv</au><au>Guo, Xuhan</au><au>Zhang, Xulin</au><au>Su, Yikai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High-dimensional broadband non-Abelian holonomy in silicon nitride photonics</atitle><jtitle>arXiv.org</jtitle><date>2023-08-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Non-Abelian geometry phase has attracted significant attention for the robust holonomic unitary behavior exhibited, which arises from the degenerate subspace evolving along a trajectory in Hilbert space. It has been regarded as a promising approach for implementing topologically protected quantum computation and logic manipulation. However, due to the challenges associated with high-dimensional parameters manipulation, this matrix-valued geometry phase has not been realized on silicon integrated photonic platform, which is CMOS compatible and regarded as the most promising flatform for next-generation functional devices. Here, we demonstrate the first non-Abelian holonomic high-dimensional unitary matrices on multilayer silicon nitride integrated platform. By leveraging the advantage of integrated platform and geometry phase, ultracompact footprint, highest order (up to six) and broadband operation (larger than 100nm) non-Abelian holonomy unitary matrices are experimentally realized. Our work paves the way for versatile non-Abelian optical computing devices in integrated photonics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2850382389 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Broadband Hilbert space Multilayers Photonics Quantum computing Silicon nitride |
title | High-dimensional broadband non-Abelian holonomy in silicon nitride photonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High-dimensional%20broadband%20non-Abelian%20holonomy%20in%20silicon%20nitride%20photonics&rft.jtitle=arXiv.org&rft.au=Chen,%20Youlv&rft.date=2023-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850382389%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28503823893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2850382389&rft_id=info:pmid/&rfr_iscdi=true |