Loading…
Ni cluster embedded (111)NiO layers grown on (0001)GaN films using pulsed laser deposition technique
(111) NiO epitaxial layers embedded with crystallographically oriented Ni-clusters are grown on c-GaN/Sapphire templates using pulsed laser deposition technique. Structural and magnetic properties of the films are examined by a variety of techniques including high resolution x-ray diffraction, prece...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (111) NiO epitaxial layers embedded with crystallographically oriented Ni-clusters are grown on c-GaN/Sapphire templates using pulsed laser deposition technique. Structural and magnetic properties of the films are examined by a variety of techniques including high resolution x-ray diffraction, precession-electron diffraction and superconducting quantum interference device magnetometry. The study reveals that the inclusion, orientation, shape, size, density and magnetic properties of these clusters depend strongly on the growth temperature (TG). Though, most of the Ni-clusters are found to be crystallographically aligned with the NiO matrix with Ni(111) parallel to NiO(111), clusters with other orientations also exist, especially in samples grown at lower temperatures. Average size and density of the clusters increase with TG . Proportion of the Ni(111) parallel to NiO(111) oriented clusters also improves as TG is increased. All cluster embedded films show ferromagnetic behaviour even at room temperature. Easy-axis is found to be oriented in the layer plane in samples grown at relatively lower temperatures. However, it turns perpendicular to the layer plane for samples grown at sufficiently high temperatures. This reversal of easy-axis has been attributed to the size dependent competition between the shape, magnetoelastic and the surface anisotropies of the clusters. This composite material thus has great potential to serve as spin-injector and spinstorage medium in GaN based spintronics of the future. |
---|---|
ISSN: | 2331-8422 |