Loading…
Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer
To counteract rising bots, many CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) have been developed throughout the years. Automated attacks [1], however, employing powerful deep learning techniques, have had high success rates over common CAPTCHAs, including im...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-217a5a97ab2d96376873ff1a0b8de5720d0ab34bb5e6c3a840d4838c66eb25083 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Dinh, Nghia Tran-Trung, Kiet Hoang, Vinh Truong |
description | To counteract rising bots, many CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) have been developed throughout the years. Automated attacks [1], however, employing powerful deep learning techniques, have had high success rates over common CAPTCHAs, including image-based and text-based CAPTCHAs. Optimistically, introducing imperceptible noise, Adversarial Examples have lately been shown to particularly impact DNN (Deep Neural Network) networks. The authors improved the CAPTCHA security architecture by increasing the resilience of Adversarial Examples when combined with Neural Style Transfer. The findings demonstrated that the proposed approach considerably improves the security of ordinary CAPTCHAs. |
doi_str_mv | 10.1109/ACCESS.2023.3298442 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2851359166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10192423</ieee_id><doaj_id>oai_doaj_org_article_76438b4683b5449f9d70891f193ad644</doaj_id><sourcerecordid>2851359166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-217a5a97ab2d96376873ff1a0b8de5720d0ab34bb5e6c3a840d4838c66eb25083</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4bt3v7B5DqFooVUh7XjbJpKakSd1N1P57t6ZI5zLDm3lvHrwguMdohjFST3GSzNN0RhChM0qUZIxcBSOChZpSTsX1xXwbTJzbIV_SQzwaBau43-6h6cIkfl8nr3GYQt7bqjuGG1c12zAuvsA6YytTh_Mfsz_U4MLvqvsIV9BbD6bdsYZwbU3jSrB3wU1pageTcx8Hm-e5150u314WSbyc5pSrbkpwZLhRkclIoQSNhIxoWWKDMlkAjwgqkMkoyzIOIqdGMlQwSWUuBGSEI0nHwWLQLVqz0wdb7Y096tZU-g9o7VYb21V5DToSjMqMCUkzzpgqVREhqXCJFTWFYMxrPQ5aB9t-9uA6vWt723j7mkiOvWEshL-iw1VuW-cslP9fMdKnHPSQgz7loM85eNbDwKoA4IKBFfFb-gsCEIGM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851359166</pqid></control><display><type>article</type><title>Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer</title><source>IEEE Xplore Open Access Journals</source><creator>Dinh, Nghia ; Tran-Trung, Kiet ; Hoang, Vinh Truong</creator><creatorcontrib>Dinh, Nghia ; Tran-Trung, Kiet ; Hoang, Vinh Truong</creatorcontrib><description>To counteract rising bots, many CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) have been developed throughout the years. Automated attacks [1], however, employing powerful deep learning techniques, have had high success rates over common CAPTCHAs, including image-based and text-based CAPTCHAs. Optimistically, introducing imperceptible noise, Adversarial Examples have lately been shown to particularly impact DNN (Deep Neural Network) networks. The authors improved the CAPTCHA security architecture by increasing the resilience of Adversarial Examples when combined with Neural Style Transfer. The findings demonstrated that the proposed approach considerably improves the security of ordinary CAPTCHAs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3298442</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adversarial examples ; Adversarial machine learning ; Artificial neural networks ; CAPTCHA ; CAPTCHAs ; CNN ; cognitive ; Computation ; Deep learning ; DNN ; Image recognition ; Logic ; Machine learning ; Perturbation methods ; Resilience ; Security ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-217a5a97ab2d96376873ff1a0b8de5720d0ab34bb5e6c3a840d4838c66eb25083</cites><orcidid>0000-0003-4871-7476 ; 0000-0002-3464-3894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10192423$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27624,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Dinh, Nghia</creatorcontrib><creatorcontrib>Tran-Trung, Kiet</creatorcontrib><creatorcontrib>Hoang, Vinh Truong</creatorcontrib><title>Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer</title><title>IEEE access</title><addtitle>Access</addtitle><description>To counteract rising bots, many CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) have been developed throughout the years. Automated attacks [1], however, employing powerful deep learning techniques, have had high success rates over common CAPTCHAs, including image-based and text-based CAPTCHAs. Optimistically, introducing imperceptible noise, Adversarial Examples have lately been shown to particularly impact DNN (Deep Neural Network) networks. The authors improved the CAPTCHA security architecture by increasing the resilience of Adversarial Examples when combined with Neural Style Transfer. The findings demonstrated that the proposed approach considerably improves the security of ordinary CAPTCHAs.</description><subject>adversarial examples</subject><subject>Adversarial machine learning</subject><subject>Artificial neural networks</subject><subject>CAPTCHA</subject><subject>CAPTCHAs</subject><subject>CNN</subject><subject>cognitive</subject><subject>Computation</subject><subject>Deep learning</subject><subject>DNN</subject><subject>Image recognition</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Perturbation methods</subject><subject>Resilience</subject><subject>Security</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4bt3v7B5DqFooVUh7XjbJpKakSd1N1P57t6ZI5zLDm3lvHrwguMdohjFST3GSzNN0RhChM0qUZIxcBSOChZpSTsX1xXwbTJzbIV_SQzwaBau43-6h6cIkfl8nr3GYQt7bqjuGG1c12zAuvsA6YytTh_Mfsz_U4MLvqvsIV9BbD6bdsYZwbU3jSrB3wU1pageTcx8Hm-e5150u314WSbyc5pSrbkpwZLhRkclIoQSNhIxoWWKDMlkAjwgqkMkoyzIOIqdGMlQwSWUuBGSEI0nHwWLQLVqz0wdb7Y096tZU-g9o7VYb21V5DToSjMqMCUkzzpgqVREhqXCJFTWFYMxrPQ5aB9t-9uA6vWt723j7mkiOvWEshL-iw1VuW-cslP9fMdKnHPSQgz7loM85eNbDwKoA4IKBFfFb-gsCEIGM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Dinh, Nghia</creator><creator>Tran-Trung, Kiet</creator><creator>Hoang, Vinh Truong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4871-7476</orcidid><orcidid>https://orcid.org/0000-0002-3464-3894</orcidid></search><sort><creationdate>20230101</creationdate><title>Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer</title><author>Dinh, Nghia ; Tran-Trung, Kiet ; Hoang, Vinh Truong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-217a5a97ab2d96376873ff1a0b8de5720d0ab34bb5e6c3a840d4838c66eb25083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adversarial examples</topic><topic>Adversarial machine learning</topic><topic>Artificial neural networks</topic><topic>CAPTCHA</topic><topic>CAPTCHAs</topic><topic>CNN</topic><topic>cognitive</topic><topic>Computation</topic><topic>Deep learning</topic><topic>DNN</topic><topic>Image recognition</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Perturbation methods</topic><topic>Resilience</topic><topic>Security</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Nghia</creatorcontrib><creatorcontrib>Tran-Trung, Kiet</creatorcontrib><creatorcontrib>Hoang, Vinh Truong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Nghia</au><au>Tran-Trung, Kiet</au><au>Hoang, Vinh Truong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To counteract rising bots, many CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans Apart) have been developed throughout the years. Automated attacks [1], however, employing powerful deep learning techniques, have had high success rates over common CAPTCHAs, including image-based and text-based CAPTCHAs. Optimistically, introducing imperceptible noise, Adversarial Examples have lately been shown to particularly impact DNN (Deep Neural Network) networks. The authors improved the CAPTCHA security architecture by increasing the resilience of Adversarial Examples when combined with Neural Style Transfer. The findings demonstrated that the proposed approach considerably improves the security of ordinary CAPTCHAs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3298442</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4871-7476</orcidid><orcidid>https://orcid.org/0000-0002-3464-3894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2851359166 |
source | IEEE Xplore Open Access Journals |
subjects | adversarial examples Adversarial machine learning Artificial neural networks CAPTCHA CAPTCHAs CNN cognitive Computation Deep learning DNN Image recognition Logic Machine learning Perturbation methods Resilience Security Training |
title | Augment CAPTCHA Security Using Adversarial Examples with Neural Style Transfer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augment%20CAPTCHA%20Security%20Using%20Adversarial%20Examples%20with%20Neural%20Style%20Transfer&rft.jtitle=IEEE%20access&rft.au=Dinh,%20Nghia&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3298442&rft_dat=%3Cproquest_ieee_%3E2851359166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-217a5a97ab2d96376873ff1a0b8de5720d0ab34bb5e6c3a840d4838c66eb25083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851359166&rft_id=info:pmid/&rft_ieee_id=10192423&rfr_iscdi=true |