Loading…
Water-repellent and self-attachable flexible conductive patch
Achieving exceptional water-repellency and reliable reversible adhesion is crucial for the development of wearable flexible electronics. However, simultaneously achieving these properties presents a significant challenge, as water-repellency requires maximizing the presence of air while robust adhes...
Saved in:
Published in: | Applied physics letters 2023-08, Vol.123 (7) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Achieving exceptional water-repellency and reliable reversible adhesion is crucial for the development of wearable flexible electronics. However, simultaneously achieving these properties presents a significant challenge, as water-repellency requires maximizing the presence of air while robust adhesion necessitates enhancing the solid fraction. In this study, we present a flexible and transparent conductive patch that addresses this challenge by offering simultaneous robust superhydrophobicity and strong adhesion in both dry and wet conditions. The device incorporates a unique combination of overhang micropillars, microgrids and a percolating network of carbon nanotubes. The proposed patch demonstrates outstanding water repellency with a contact angle exceeding 150°, while delivering impressive dry adhesion (>200 kPa) and wet adhesion (>150 kPa) performance. Furthermore, the device exhibits tunable electrical conductivity and optical transmittance. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0160217 |