Loading…

Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction

Let G be a compact Lie group. We study a class of Hamiltonian ( G × S 1 ) -manifolds decorated with a function s with certain equivariance properties, under conditions on the G -action which we call of (semi-)linear type . In this context, a close analogue of hyperkähler reduction is defined, and ou...

Full description

Saved in:
Bibliographic Details
Published in:Geometriae dedicata 2023-10, Vol.217 (5), Article 94
Main Authors: Fisher, Jonathan, Jeffrey, Lisa, Malusà, Alessandro, Rayan, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-18a594fba916ee4448abc21a9e9aace1f90aa6a027e8c30975d415fa30f03a63
container_end_page
container_issue 5
container_start_page
container_title Geometriae dedicata
container_volume 217
creator Fisher, Jonathan
Jeffrey, Lisa
Malusà, Alessandro
Rayan, Steven
description Let G be a compact Lie group. We study a class of Hamiltonian ( G × S 1 ) -manifolds decorated with a function s with certain equivariance properties, under conditions on the G -action which we call of (semi-)linear type . In this context, a close analogue of hyperkähler reduction is defined, and our main result establishes surjectivity of an appropriate analogue of Kirwan’s map. As a particular case, our setting includes a class of hyperkähler manifolds with trihamiltonian torus actions, to which our surjectivity result applies.
doi_str_mv 10.1007/s10711-023-00831-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852693641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852693641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-18a594fba916ee4448abc21a9e9aace1f90aa6a027e8c30975d415fa30f03a63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGdhInS1TxJyqxgC2ypsmkSWmSYidU7Yo7cAVuwk04CYYgsWM1m_e-efoYOxZwKgD0mROghQhAqgAgUSJY77CRiLQMUhEnu2wEEMZBpKNonx04twCAVGs5Yo-3lV1jw11vF5R11UvVbTg2OZ9S4bKSuu3n69t9W9fkiHcltZZqx4vWcuRzasjistpSzsvNiuzTx3u5JMst5b1ntc0h2ytw6ejo947Zw-XFw-Q6mN5d3UzOp0EmNXSBSDBKw2KGfixRGIYJzjIpMKUUMSNRpIAYI0hNSab88igPRVSgggIUxmrMTgbsyrbPPbnOLNreNv6jkUkk41TFofApOaQy2zpnqTArW9VoN0aA-bZoBovGWzQ_Fs3al9RQcj7czMn-of9pfQFaRHk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852693641</pqid></control><display><type>article</type><title>Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction</title><source>Springer Link</source><creator>Fisher, Jonathan ; Jeffrey, Lisa ; Malusà, Alessandro ; Rayan, Steven</creator><creatorcontrib>Fisher, Jonathan ; Jeffrey, Lisa ; Malusà, Alessandro ; Rayan, Steven</creatorcontrib><description>Let G be a compact Lie group. We study a class of Hamiltonian ( G × S 1 ) -manifolds decorated with a function s with certain equivariance properties, under conditions on the G -action which we call of (semi-)linear type . In this context, a close analogue of hyperkähler reduction is defined, and our main result establishes surjectivity of an appropriate analogue of Kirwan’s map. As a particular case, our setting includes a class of hyperkähler manifolds with trihamiltonian torus actions, to which our surjectivity result applies.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-023-00831-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hamiltonian functions ; Hyperbolic Geometry ; Lie groups ; Manifolds ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Reduction ; Topology ; Toruses</subject><ispartof>Geometriae dedicata, 2023-10, Vol.217 (5), Article 94</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-18a594fba916ee4448abc21a9e9aace1f90aa6a027e8c30975d415fa30f03a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fisher, Jonathan</creatorcontrib><creatorcontrib>Jeffrey, Lisa</creatorcontrib><creatorcontrib>Malusà, Alessandro</creatorcontrib><creatorcontrib>Rayan, Steven</creatorcontrib><title>Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Let G be a compact Lie group. We study a class of Hamiltonian ( G × S 1 ) -manifolds decorated with a function s with certain equivariance properties, under conditions on the G -action which we call of (semi-)linear type . In this context, a close analogue of hyperkähler reduction is defined, and our main result establishes surjectivity of an appropriate analogue of Kirwan’s map. As a particular case, our setting includes a class of hyperkähler manifolds with trihamiltonian torus actions, to which our surjectivity result applies.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hamiltonian functions</subject><subject>Hyperbolic Geometry</subject><subject>Lie groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Reduction</subject><subject>Topology</subject><subject>Toruses</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGdhInS1TxJyqxgC2ypsmkSWmSYidU7Yo7cAVuwk04CYYgsWM1m_e-efoYOxZwKgD0mROghQhAqgAgUSJY77CRiLQMUhEnu2wEEMZBpKNonx04twCAVGs5Yo-3lV1jw11vF5R11UvVbTg2OZ9S4bKSuu3n69t9W9fkiHcltZZqx4vWcuRzasjistpSzsvNiuzTx3u5JMst5b1ntc0h2ytw6ejo947Zw-XFw-Q6mN5d3UzOp0EmNXSBSDBKw2KGfixRGIYJzjIpMKUUMSNRpIAYI0hNSab88igPRVSgggIUxmrMTgbsyrbPPbnOLNreNv6jkUkk41TFofApOaQy2zpnqTArW9VoN0aA-bZoBovGWzQ_Fs3al9RQcj7czMn-of9pfQFaRHk4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Fisher, Jonathan</creator><creator>Jeffrey, Lisa</creator><creator>Malusà, Alessandro</creator><creator>Rayan, Steven</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction</title><author>Fisher, Jonathan ; Jeffrey, Lisa ; Malusà, Alessandro ; Rayan, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-18a594fba916ee4448abc21a9e9aace1f90aa6a027e8c30975d415fa30f03a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hamiltonian functions</topic><topic>Hyperbolic Geometry</topic><topic>Lie groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Reduction</topic><topic>Topology</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, Jonathan</creatorcontrib><creatorcontrib>Jeffrey, Lisa</creatorcontrib><creatorcontrib>Malusà, Alessandro</creatorcontrib><creatorcontrib>Rayan, Steven</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, Jonathan</au><au>Jeffrey, Lisa</au><au>Malusà, Alessandro</au><au>Rayan, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>217</volume><issue>5</issue><artnum>94</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Let G be a compact Lie group. We study a class of Hamiltonian ( G × S 1 ) -manifolds decorated with a function s with certain equivariance properties, under conditions on the G -action which we call of (semi-)linear type . In this context, a close analogue of hyperkähler reduction is defined, and our main result establishes surjectivity of an appropriate analogue of Kirwan’s map. As a particular case, our setting includes a class of hyperkähler manifolds with trihamiltonian torus actions, to which our surjectivity result applies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-023-00831-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2023-10, Vol.217 (5), Article 94
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2852693641
source Springer Link
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hamiltonian functions
Hyperbolic Geometry
Lie groups
Manifolds
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Reduction
Topology
Toruses
title Kirwan surjectivity and Lefschetz–Sommese theorems for a generalized hyperkähler reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirwan%20surjectivity%20and%20Lefschetz%E2%80%93Sommese%20theorems%20for%20a%20generalized%20hyperk%C3%A4hler%20reduction&rft.jtitle=Geometriae%20dedicata&rft.au=Fisher,%20Jonathan&rft.date=2023-10-01&rft.volume=217&rft.issue=5&rft.artnum=94&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-023-00831-w&rft_dat=%3Cproquest_cross%3E2852693641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-18a594fba916ee4448abc21a9e9aace1f90aa6a027e8c30975d415fa30f03a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852693641&rft_id=info:pmid/&rfr_iscdi=true