Loading…

Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms

We consider the existence of normalized solutions to the following nonlinear Schrödinger system - Δ u + λ 1 u = μ 1 | u | p - 2 u + β v in R N , - Δ v + λ 2 v = μ 2 | v | q - 2 v + β u in R N , under the mass constraints ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 , where 2 < p ≤ 2 +...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2023-11, Vol.33 (11), Article 347
Main Authors: Chen, Haixia, Yang, Xiaolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-a3d8ca130e5a6d61396297f73efbfcc48cb832e0584eac59d928b1414a7e71f33
container_end_page
container_issue 11
container_start_page
container_title The Journal of geometric analysis
container_volume 33
creator Chen, Haixia
Yang, Xiaolong
description We consider the existence of normalized solutions to the following nonlinear Schrödinger system - Δ u + λ 1 u = μ 1 | u | p - 2 u + β v in R N , - Δ v + λ 2 v = μ 2 | v | q - 2 v + β u in R N , under the mass constraints ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 , where 2 < p ≤ 2 + 4 N ≤ q ≤ 2 ∗ , β , μ 1 , μ 2 > 0 , a 1 , a 2 > 0 , and λ 1 , λ 2 ∈ R appear as Lagrange multipliers. Under different character on p ,  q with respect to the mass critical exponent, we prove several existence results and precise asymptotic behavior of these solutions as ( a 1 , a 2 ) → ( 0 , 0 ) . These cases present substantial differences with respect to purely mass subcritical or mass supercritical situations.
doi_str_mv 10.1007/s12220-023-01405-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852693678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852693678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a3d8ca130e5a6d61396297f73efbfcc48cb832e0584eac59d928b1414a7e71f33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElD4AVaWWBvGz9hLVPESRSC1CHaW4zg0VZoUO1n0x_gBfoyUILFjNbO4547mIHRG4YICZJeJMsaAAOMEqABJ9B46olIaAsDe9ocdJBBlmDpExymtAITiIjtCD88xJB-rPBT40aWE523dd1XbJNy1eO6X8euzqJr3EPF8m7qwTvi16pa4rprgIp62_aYe0EWI63SCDkpXp3D6Oyfo5eZ6Mb0js6fb--nVjHgOpiOOF9o7yiFIpwpFuVHMZGXGQ5mX3gvtc81ZAKlFcF6awjCdU0GFy0JGS84n6Hzs3cT2ow-ps6u2j81w0jItmTJcZXpIsTHlY5tSDKXdxGrt4tZSsDtpdpRmB2n2R5rdQXyE0hDeff1X_Q_1DX8Kb_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852693678</pqid></control><display><type>article</type><title>Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms</title><source>Springer Nature</source><creator>Chen, Haixia ; Yang, Xiaolong</creator><creatorcontrib>Chen, Haixia ; Yang, Xiaolong</creatorcontrib><description>We consider the existence of normalized solutions to the following nonlinear Schrödinger system - Δ u + λ 1 u = μ 1 | u | p - 2 u + β v in R N , - Δ v + λ 2 v = μ 2 | v | q - 2 v + β u in R N , under the mass constraints ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 , where 2 &lt; p ≤ 2 + 4 N ≤ q ≤ 2 ∗ , β , μ 1 , μ 2 &gt; 0 , a 1 , a 2 &gt; 0 , and λ 1 , λ 2 ∈ R appear as Lagrange multipliers. Under different character on p ,  q with respect to the mass critical exponent, we prove several existence results and precise asymptotic behavior of these solutions as ( a 1 , a 2 ) → ( 0 , 0 ) . These cases present substantial differences with respect to purely mass subcritical or mass supercritical situations.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01405-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Asymptotic properties ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Lagrange multiplier ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2023-11, Vol.33 (11), Article 347</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-a3d8ca130e5a6d61396297f73efbfcc48cb832e0584eac59d928b1414a7e71f33</cites><orcidid>0000-0002-7648-254X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Haixia</creatorcontrib><creatorcontrib>Yang, Xiaolong</creatorcontrib><title>Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We consider the existence of normalized solutions to the following nonlinear Schrödinger system - Δ u + λ 1 u = μ 1 | u | p - 2 u + β v in R N , - Δ v + λ 2 v = μ 2 | v | q - 2 v + β u in R N , under the mass constraints ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 , where 2 &lt; p ≤ 2 + 4 N ≤ q ≤ 2 ∗ , β , μ 1 , μ 2 &gt; 0 , a 1 , a 2 &gt; 0 , and λ 1 , λ 2 ∈ R appear as Lagrange multipliers. Under different character on p ,  q with respect to the mass critical exponent, we prove several existence results and precise asymptotic behavior of these solutions as ( a 1 , a 2 ) → ( 0 , 0 ) . These cases present substantial differences with respect to purely mass subcritical or mass supercritical situations.</description><subject>Abstract Harmonic Analysis</subject><subject>Asymptotic properties</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElD4AVaWWBvGz9hLVPESRSC1CHaW4zg0VZoUO1n0x_gBfoyUILFjNbO4547mIHRG4YICZJeJMsaAAOMEqABJ9B46olIaAsDe9ocdJBBlmDpExymtAITiIjtCD88xJB-rPBT40aWE523dd1XbJNy1eO6X8euzqJr3EPF8m7qwTvi16pa4rprgIp62_aYe0EWI63SCDkpXp3D6Oyfo5eZ6Mb0js6fb--nVjHgOpiOOF9o7yiFIpwpFuVHMZGXGQ5mX3gvtc81ZAKlFcF6awjCdU0GFy0JGS84n6Hzs3cT2ow-ps6u2j81w0jItmTJcZXpIsTHlY5tSDKXdxGrt4tZSsDtpdpRmB2n2R5rdQXyE0hDeff1X_Q_1DX8Kb_U</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Chen, Haixia</creator><creator>Yang, Xiaolong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7648-254X</orcidid></search><sort><creationdate>20231101</creationdate><title>Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms</title><author>Chen, Haixia ; Yang, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a3d8ca130e5a6d61396297f73efbfcc48cb832e0584eac59d928b1414a7e71f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Asymptotic properties</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haixia</creatorcontrib><creatorcontrib>Yang, Xiaolong</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haixia</au><au>Yang, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><artnum>347</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We consider the existence of normalized solutions to the following nonlinear Schrödinger system - Δ u + λ 1 u = μ 1 | u | p - 2 u + β v in R N , - Δ v + λ 2 v = μ 2 | v | q - 2 v + β u in R N , under the mass constraints ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 , where 2 &lt; p ≤ 2 + 4 N ≤ q ≤ 2 ∗ , β , μ 1 , μ 2 &gt; 0 , a 1 , a 2 &gt; 0 , and λ 1 , λ 2 ∈ R appear as Lagrange multipliers. Under different character on p ,  q with respect to the mass critical exponent, we prove several existence results and precise asymptotic behavior of these solutions as ( a 1 , a 2 ) → ( 0 , 0 ) . These cases present substantial differences with respect to purely mass subcritical or mass supercritical situations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01405-8</doi><orcidid>https://orcid.org/0000-0002-7648-254X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2023-11, Vol.33 (11), Article 347
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2852693678
source Springer Nature
subjects Abstract Harmonic Analysis
Asymptotic properties
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Lagrange multiplier
Mathematics
Mathematics and Statistics
title Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prescribed%20Mass%20Solutions%20to%20Schr%C3%B6dinger%20Systems%20With%20linear%20Coupled%20Terms&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Chen,%20Haixia&rft.date=2023-11-01&rft.volume=33&rft.issue=11&rft.artnum=347&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01405-8&rft_dat=%3Cproquest_cross%3E2852693678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-a3d8ca130e5a6d61396297f73efbfcc48cb832e0584eac59d928b1414a7e71f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852693678&rft_id=info:pmid/&rfr_iscdi=true