Loading…

Sparse-Prony FRI signal reconstruction

Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, thes...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing image and video processing, 2023-10, Vol.17 (7), p.3443-3449
Main Authors: Reddy, P. Sudhakar, Raghavendra, B. S., Narasimhadhan, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3
container_end_page 3449
container_issue 7
container_start_page 3443
container_title Signal, image and video processing
container_volume 17
creator Reddy, P. Sudhakar
Raghavendra, B. S.
Narasimhadhan, A. V.
description Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.
doi_str_mv 10.1007/s11760-023-02566-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852694377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852694377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFwVt0Mskm6VGKtYWC4p9zSLPZsqVu1mT30G9vdEVvDgwzh_cejx8hlwxuGIC6TYwpCRSQ5y2lpPyETJiWnDLF2OnvD_yczFLaQx6OSks9IdcvnY3J06cY2mOxfF4Xqdm19lBE70Kb-ji4vgntBTmr7SH52c-dkrfl_etiRTePD-vF3YY6VNBTVnntK4kOZbUFlLZCxsGhnithhUS0AlS91UKUwjsLVqGoXW4vs04Kz6fkasztYvgYfOrNPgwx90kGdYlyLrhSWYWjysWQUvS16WLzbuPRMDBfSMyIxGQk5huJ4dnER1PK4nbn41_0P65PgDthKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852694377</pqid></control><display><type>article</type><title>Sparse-Prony FRI signal reconstruction</title><source>Springer Nature</source><creator>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creator><creatorcontrib>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creatorcontrib><description>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02566-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Polynomials ; Signal reconstruction ; Signal to noise ratio ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2023-10, Vol.17 (7), p.3443-3449</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Reddy, P. Sudhakar</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><title>Sparse-Prony FRI signal reconstruction</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Polynomials</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKcFwVt0Mskm6VGKtYWC4p9zSLPZsqVu1mT30G9vdEVvDgwzh_cejx8hlwxuGIC6TYwpCRSQ5y2lpPyETJiWnDLF2OnvD_yczFLaQx6OSks9IdcvnY3J06cY2mOxfF4Xqdm19lBE70Kb-ji4vgntBTmr7SH52c-dkrfl_etiRTePD-vF3YY6VNBTVnntK4kOZbUFlLZCxsGhnithhUS0AlS91UKUwjsLVqGoXW4vs04Kz6fkasztYvgYfOrNPgwx90kGdYlyLrhSWYWjysWQUvS16WLzbuPRMDBfSMyIxGQk5huJ4dnER1PK4nbn41_0P65PgDthKw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Reddy, P. Sudhakar</creator><creator>Raghavendra, B. S.</creator><creator>Narasimhadhan, A. V.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Sparse-Prony FRI signal reconstruction</title><author>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Polynomials</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, P. Sudhakar</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, P. Sudhakar</au><au>Raghavendra, B. S.</au><au>Narasimhadhan, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-Prony FRI signal reconstruction</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>7</issue><spage>3443</spage><epage>3449</epage><pages>3443-3449</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02566-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2023-10, Vol.17 (7), p.3443-3449
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2852694377
source Springer Nature
subjects Computer Imaging
Computer Science
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Polynomials
Signal reconstruction
Signal to noise ratio
Signal,Image and Speech Processing
Vision
title Sparse-Prony FRI signal reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-Prony%20FRI%20signal%20reconstruction&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Reddy,%20P.%20Sudhakar&rft.date=2023-10-01&rft.volume=17&rft.issue=7&rft.spage=3443&rft.epage=3449&rft.pages=3443-3449&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02566-3&rft_dat=%3Cproquest_cross%3E2852694377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852694377&rft_id=info:pmid/&rfr_iscdi=true