Loading…
Sparse-Prony FRI signal reconstruction
Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, thes...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2023-10, Vol.17 (7), p.3443-3449 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3 |
container_end_page | 3449 |
container_issue | 7 |
container_start_page | 3443 |
container_title | Signal, image and video processing |
container_volume | 17 |
creator | Reddy, P. Sudhakar Raghavendra, B. S. Narasimhadhan, A. V. |
description | Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR. |
doi_str_mv | 10.1007/s11760-023-02566-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852694377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852694377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFwVt0Mskm6VGKtYWC4p9zSLPZsqVu1mT30G9vdEVvDgwzh_cejx8hlwxuGIC6TYwpCRSQ5y2lpPyETJiWnDLF2OnvD_yczFLaQx6OSks9IdcvnY3J06cY2mOxfF4Xqdm19lBE70Kb-ji4vgntBTmr7SH52c-dkrfl_etiRTePD-vF3YY6VNBTVnntK4kOZbUFlLZCxsGhnithhUS0AlS91UKUwjsLVqGoXW4vs04Kz6fkasztYvgYfOrNPgwx90kGdYlyLrhSWYWjysWQUvS16WLzbuPRMDBfSMyIxGQk5huJ4dnER1PK4nbn41_0P65PgDthKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852694377</pqid></control><display><type>article</type><title>Sparse-Prony FRI signal reconstruction</title><source>Springer Nature</source><creator>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creator><creatorcontrib>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creatorcontrib><description>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02566-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Polynomials ; Signal reconstruction ; Signal to noise ratio ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2023-10, Vol.17 (7), p.3443-3449</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Reddy, P. Sudhakar</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><title>Sparse-Prony FRI signal reconstruction</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Polynomials</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKcFwVt0Mskm6VGKtYWC4p9zSLPZsqVu1mT30G9vdEVvDgwzh_cejx8hlwxuGIC6TYwpCRSQ5y2lpPyETJiWnDLF2OnvD_yczFLaQx6OSks9IdcvnY3J06cY2mOxfF4Xqdm19lBE70Kb-ji4vgntBTmr7SH52c-dkrfl_etiRTePD-vF3YY6VNBTVnntK4kOZbUFlLZCxsGhnithhUS0AlS91UKUwjsLVqGoXW4vs04Kz6fkasztYvgYfOrNPgwx90kGdYlyLrhSWYWjysWQUvS16WLzbuPRMDBfSMyIxGQk5huJ4dnER1PK4nbn41_0P65PgDthKw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Reddy, P. Sudhakar</creator><creator>Raghavendra, B. S.</creator><creator>Narasimhadhan, A. V.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Sparse-Prony FRI signal reconstruction</title><author>Reddy, P. Sudhakar ; Raghavendra, B. S. ; Narasimhadhan, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Polynomials</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, P. Sudhakar</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, P. Sudhakar</au><au>Raghavendra, B. S.</au><au>Narasimhadhan, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-Prony FRI signal reconstruction</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>7</issue><spage>3443</spage><epage>3449</epage><pages>3443-3449</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Finite rate of innovation (FRI) approach is used for sampling and reconstruction of a class of non-bandlimited continuous signals having a finite number of free parameters. Traditionally, Prony and matrix-pencil methods are proposed to reconstruct FRI signals from the discrete samples. However, these methods tend to break down at a certain signal-to-noise ratio (SNR). In this paper, we propose sparsity-based annihilating filter, refer it as sparse-Prony, which avoids polynomial root-finding. In the noiseless scenario, the proposed method is able to recover perfectly the original signal. Simulation results for the noisy scenario demonstrate significant improvement in the performance in terms of MSE over the traditional FRI methods, especially in the breakdown SNR.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02566-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2023-10, Vol.17 (7), p.3443-3449 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2852694377 |
source | Springer Nature |
subjects | Computer Imaging Computer Science Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Polynomials Signal reconstruction Signal to noise ratio Signal,Image and Speech Processing Vision |
title | Sparse-Prony FRI signal reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-Prony%20FRI%20signal%20reconstruction&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Reddy,%20P.%20Sudhakar&rft.date=2023-10-01&rft.volume=17&rft.issue=7&rft.spage=3443&rft.epage=3449&rft.pages=3443-3449&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02566-3&rft_dat=%3Cproquest_cross%3E2852694377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1de8ed62c26db026ad2130c28974a4622a407fb84454eca0a724fc176621364e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852694377&rft_id=info:pmid/&rfr_iscdi=true |