Loading…
Passive acoustic monitoring indicates Barred Owls are established in northern coastal California and management intervention is warranted
Barred Owls (Strix varia) have recently expanded westward from eastern North America, contributing to substantial declines in Northern Spotted Owls (Strix occidentalis caurina). Passive acoustic monitoring (PAM) represents a potentially powerful approach for tracking range expansions like the Barred...
Saved in:
Published in: | Ornithological Applications 2023-08, Vol.125 (3), p.1-11 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Barred Owls (Strix varia) have recently expanded westward from eastern North America, contributing to substantial declines in Northern Spotted Owls (Strix occidentalis caurina). Passive acoustic monitoring (PAM) represents a potentially powerful approach for tracking range expansions like the Barred Owl's, but further methods development is needed to ensure that PAM-informed occupancy models meaningfully reflect population processes. Focusing on the leading edge of the Barred Owl range expansion in coastal California, we used a combination of PAM data, GPS-tagging, and active surveys to (1) estimate breeding home range size, (2) identify patterns of vocal activity that reflect resident occupancy, and (3) estimate resident occupancy rates. Mean breeding season home range size (452 ha) was reasonably consistent with the size of cells (400 ha) sampled with autonomous recording units (ARUs). Nevertheless, false-positive acoustic detections of Barred Owls frequently occurred within cells not containing an activity center such that site occupancy estimates derived using all detected vocalizations (0.61) were unlikely to be representative of resident occupancy. However, the proportion of survey nights with confirmed vocalizations (VN) and the number of ARUs within a sampling cell with confirmed vocalizations (VU) were indicative of Barred Owl residency. Moreover, the false positive error rate could be reduced for occupancy analyses by establishing thresholds of VN and VU to define detections, although doing so increased false negative error rates in some cases. Using different thresholds of VN and VU, we estimated resident occupancy to be 0.29–0.44, which indicates that Barred Owls have become established in the region but also that timely lethal removals could still help prevent the extirpation of Northern Spotted Owls. Our findings provide a scalable framework for monitoring Barred Owl populations throughout their expanded range and, more broadly, a basis for converting site occupancy to resident occupancy in PAM programs. How to Cite Watson, W. A., C. M. Wood, K. G. Kelly, D. F. Hofstadter, N. F. Kryshak, C. J. Zulla, S. A. Whitmore, V. O'Rourke, J. J. Keane, and M. Z. Peery (2023). Passive acoustic monitoring indicates Barred Owls are established in northern coastal California and management intervention is warranted. Ornithological Applications 125:duad017. The range of the Barred Owl has expanded to overlap that of the Northern Spotted Owl, and Barred Owls |
---|---|
ISSN: | 0010-5422 2732-4621 |
DOI: | 10.1093/ornithapp/duad017 |