Loading…

Geometric Optics Approximation for the Einstein Vacuum Equations

We show the stability of the geometric optics approximation in general relativity by constructing a family ( g λ ) λ ∈ ( 0 , 1 ] of high-frequency metrics solutions to the Einstein vacuum equations in 3 + 1 dimensions without any symmetry assumptions. In the limit λ → 0 this family approaches a fixe...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2023-09, Vol.402 (3), p.3109-3200
Main Author: Touati, Arthur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73
cites cdi_FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73
container_end_page 3200
container_issue 3
container_start_page 3109
container_title Communications in mathematical physics
container_volume 402
creator Touati, Arthur
description We show the stability of the geometric optics approximation in general relativity by constructing a family ( g λ ) λ ∈ ( 0 , 1 ] of high-frequency metrics solutions to the Einstein vacuum equations in 3 + 1 dimensions without any symmetry assumptions. In the limit λ → 0 this family approaches a fixed background g 0 solution of the Einstein-null dust system, illustrating the backreaction phenomenon. We introduce a precise second order high-frequency ansatz and identify a generalised wave gauge as well as polarization conditions at each order. The validity of our ansatz is ensured by a weak polarized null condition satisfied by the quadratic non-linearity in the Ricci tensor. The Einstein vacuum equations for g λ are recast as a hierarchy of transport and wave equations, and their coupling induces a loss of derivatives. In order to solve it, we take advantage of a null foliation associated to g 0 as well as a Fourier cut-off adapted to our ansatz. The construction of high-frequency initial data solving the constraint equations is the content of our companion paper (Touati in Commun Math Phys, 2023).
doi_str_mv 10.1007/s00220-023-04790-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853380126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853380126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAc3Qm2WazN0upVSj0ol5Dmk10i93dJruw_nvTruBNGJjLe2_efITcItwjQP4QATgHBlwwyPIC2HBGJpgJzqBAeU4mAAhMSJSX5CrGHQAUXMoJeVy5Zu-6UFm6abvKRjpv29AM1d50VVNT3wTafTq6rOrYuaqm78b2_Z4uD_1JEK_JhTdf0d387il5e1q-Lp7ZerN6WczXzAosOuZnShg3K5GbLDt2Qu-2Zb7lNvdlWVhhPaAtjPJpnMp4hk4pVFI4bkuTiym5G3NTu0PvYqd3TR_qdFJzNRNCAXKZVHxU2dDEGJzXbUivhG-NoI-k9EhKJ1L6REoPySRGU0zi-sOFv-h_XD_UQGyJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853380126</pqid></control><display><type>article</type><title>Geometric Optics Approximation for the Einstein Vacuum Equations</title><source>Springer Nature</source><creator>Touati, Arthur</creator><creatorcontrib>Touati, Arthur</creatorcontrib><description>We show the stability of the geometric optics approximation in general relativity by constructing a family ( g λ ) λ ∈ ( 0 , 1 ] of high-frequency metrics solutions to the Einstein vacuum equations in 3 + 1 dimensions without any symmetry assumptions. In the limit λ → 0 this family approaches a fixed background g 0 solution of the Einstein-null dust system, illustrating the backreaction phenomenon. We introduce a precise second order high-frequency ansatz and identify a generalised wave gauge as well as polarization conditions at each order. The validity of our ansatz is ensured by a weak polarized null condition satisfied by the quadratic non-linearity in the Ricci tensor. The Einstein vacuum equations for g λ are recast as a hierarchy of transport and wave equations, and their coupling induces a loss of derivatives. In order to solve it, we take advantage of a null foliation associated to g 0 as well as a Fourier cut-off adapted to our ansatz. The construction of high-frequency initial data solving the constraint equations is the content of our companion paper (Touati in Commun Math Phys, 2023).</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-023-04790-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Classical and Quantum Gravitation ; Complex Systems ; Geometrical optics ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity ; Relativity Theory ; Tensors ; Theoretical ; Wave equations</subject><ispartof>Communications in mathematical physics, 2023-09, Vol.402 (3), p.3109-3200</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73</citedby><cites>FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73</cites><orcidid>0000-0002-0359-1665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Touati, Arthur</creatorcontrib><title>Geometric Optics Approximation for the Einstein Vacuum Equations</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We show the stability of the geometric optics approximation in general relativity by constructing a family ( g λ ) λ ∈ ( 0 , 1 ] of high-frequency metrics solutions to the Einstein vacuum equations in 3 + 1 dimensions without any symmetry assumptions. In the limit λ → 0 this family approaches a fixed background g 0 solution of the Einstein-null dust system, illustrating the backreaction phenomenon. We introduce a precise second order high-frequency ansatz and identify a generalised wave gauge as well as polarization conditions at each order. The validity of our ansatz is ensured by a weak polarized null condition satisfied by the quadratic non-linearity in the Ricci tensor. The Einstein vacuum equations for g λ are recast as a hierarchy of transport and wave equations, and their coupling induces a loss of derivatives. In order to solve it, we take advantage of a null foliation associated to g 0 as well as a Fourier cut-off adapted to our ansatz. The construction of high-frequency initial data solving the constraint equations is the content of our companion paper (Touati in Commun Math Phys, 2023).</description><subject>Approximation</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Geometrical optics</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity</subject><subject>Relativity Theory</subject><subject>Tensors</subject><subject>Theoretical</subject><subject>Wave equations</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPAc3Qm2WazN0upVSj0ol5Dmk10i93dJruw_nvTruBNGJjLe2_efITcItwjQP4QATgHBlwwyPIC2HBGJpgJzqBAeU4mAAhMSJSX5CrGHQAUXMoJeVy5Zu-6UFm6abvKRjpv29AM1d50VVNT3wTafTq6rOrYuaqm78b2_Z4uD_1JEK_JhTdf0d387il5e1q-Lp7ZerN6WczXzAosOuZnShg3K5GbLDt2Qu-2Zb7lNvdlWVhhPaAtjPJpnMp4hk4pVFI4bkuTiym5G3NTu0PvYqd3TR_qdFJzNRNCAXKZVHxU2dDEGJzXbUivhG-NoI-k9EhKJ1L6REoPySRGU0zi-sOFv-h_XD_UQGyJ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Touati, Arthur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0359-1665</orcidid></search><sort><creationdate>20230901</creationdate><title>Geometric Optics Approximation for the Einstein Vacuum Equations</title><author>Touati, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Geometrical optics</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity</topic><topic>Relativity Theory</topic><topic>Tensors</topic><topic>Theoretical</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touati, Arthur</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touati, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Optics Approximation for the Einstein Vacuum Equations</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>402</volume><issue>3</issue><spage>3109</spage><epage>3200</epage><pages>3109-3200</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We show the stability of the geometric optics approximation in general relativity by constructing a family ( g λ ) λ ∈ ( 0 , 1 ] of high-frequency metrics solutions to the Einstein vacuum equations in 3 + 1 dimensions without any symmetry assumptions. In the limit λ → 0 this family approaches a fixed background g 0 solution of the Einstein-null dust system, illustrating the backreaction phenomenon. We introduce a precise second order high-frequency ansatz and identify a generalised wave gauge as well as polarization conditions at each order. The validity of our ansatz is ensured by a weak polarized null condition satisfied by the quadratic non-linearity in the Ricci tensor. The Einstein vacuum equations for g λ are recast as a hierarchy of transport and wave equations, and their coupling induces a loss of derivatives. In order to solve it, we take advantage of a null foliation associated to g 0 as well as a Fourier cut-off adapted to our ansatz. The construction of high-frequency initial data solving the constraint equations is the content of our companion paper (Touati in Commun Math Phys, 2023).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-023-04790-x</doi><tpages>92</tpages><orcidid>https://orcid.org/0000-0002-0359-1665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023-09, Vol.402 (3), p.3109-3200
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2853380126
source Springer Nature
subjects Approximation
Classical and Quantum Gravitation
Complex Systems
Geometrical optics
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity
Relativity Theory
Tensors
Theoretical
Wave equations
title Geometric Optics Approximation for the Einstein Vacuum Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Optics%20Approximation%20for%20the%20Einstein%20Vacuum%20Equations&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Touati,%20Arthur&rft.date=2023-09-01&rft.volume=402&rft.issue=3&rft.spage=3109&rft.epage=3200&rft.pages=3109-3200&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-023-04790-x&rft_dat=%3Cproquest_cross%3E2853380126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f583ae5d12a4409161febd7b2c7fdd9c3cf01c9a8fa8fe84241e881863e2cda73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2853380126&rft_id=info:pmid/&rfr_iscdi=true