Loading…

A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method

Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propeller...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2023-08, Vol.13 (8), p.085121-085121-12
Main Author: Binama, Maxime
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043
container_end_page 085121-12
container_issue 8
container_start_page 085121
container_title AIP advances
container_volume 13
creator Binama, Maxime
description Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.
doi_str_mv 10.1063/5.0165357
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2854085330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_49264564124f4cffb8bc6d313ba00b51</doaj_id><sourcerecordid>2854085330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</originalsourceid><addsrcrecordid>eNp9kUtLxDAQx4MoKOse_AYBTwpd8256XBYfCwte9BzytF3aZk1a1G9vtSKenMu8fvxnmAHgAqMVRoLe8BXCglNeHoEzgrksKCHi-E98CpY579FkrMJIsjPQraGN3WEc9NDEXrew80MdHQwxfTda_17kWh-8g_WHS3psGwuHMZnYaVs3vU8fMLTxDRqdJyb2cKg9bLrOp6_cxLF3emJm2XNwEnSb_fLHL8Dz3e3T5qHYPd5vN-tdYSmnQ0GkYJX2XFpDuA3YlyVlUgtnRJCCckydcdobJynGEtuS2LKi2NDSIFQhRhdgO-u6qPfqkJpu2kFF3ajvQkwvSqehsa1XrCKCccEwYYHZEIw0VjiKqdEImWnUAlzOWocUX0efB7WPY5pOlRWRnCHJKUUTdTVTNsWckw-_UzFSX89RXP08Z2KvZzbbZr77P_AnohKObw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854085330</pqid></control><display><type>article</type><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Binama, Maxime</creator><creatorcontrib>Binama, Maxime</creatorcontrib><description>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0165357</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Finite element method ; Flow simulation ; Fluid flow ; Free surfaces ; High Reynolds number ; Propellers ; Reynolds number ; Turbines ; Turbomachinery</subject><ispartof>AIP advances, 2023-08, Vol.13 (8), p.085121-085121-12</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</cites><orcidid>0000-0002-4279-1475 ; 0000-0002-4292-4848 ; 0009-0002-3959-9148 ; 0000-0003-0499-2409 ; 0000-0002-4260-9899 ; 0000-0003-4135-0640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0165357$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Binama, Maxime</creatorcontrib><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><title>AIP advances</title><description>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>High Reynolds number</subject><subject>Propellers</subject><subject>Reynolds number</subject><subject>Turbines</subject><subject>Turbomachinery</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLxDAQx4MoKOse_AYBTwpd8256XBYfCwte9BzytF3aZk1a1G9vtSKenMu8fvxnmAHgAqMVRoLe8BXCglNeHoEzgrksKCHi-E98CpY579FkrMJIsjPQraGN3WEc9NDEXrew80MdHQwxfTda_17kWh-8g_WHS3psGwuHMZnYaVs3vU8fMLTxDRqdJyb2cKg9bLrOp6_cxLF3emJm2XNwEnSb_fLHL8Dz3e3T5qHYPd5vN-tdYSmnQ0GkYJX2XFpDuA3YlyVlUgtnRJCCckydcdobJynGEtuS2LKi2NDSIFQhRhdgO-u6qPfqkJpu2kFF3ajvQkwvSqehsa1XrCKCccEwYYHZEIw0VjiKqdEImWnUAlzOWocUX0efB7WPY5pOlRWRnCHJKUUTdTVTNsWckw-_UzFSX89RXP08Z2KvZzbbZr77P_AnohKObw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Binama, Maxime</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4279-1475</orcidid><orcidid>https://orcid.org/0000-0002-4292-4848</orcidid><orcidid>https://orcid.org/0009-0002-3959-9148</orcidid><orcidid>https://orcid.org/0000-0003-0499-2409</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid></search><sort><creationdate>20230801</creationdate><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><author>Binama, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>High Reynolds number</topic><topic>Propellers</topic><topic>Reynolds number</topic><topic>Turbines</topic><topic>Turbomachinery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binama, Maxime</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binama, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</atitle><jtitle>AIP advances</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>085121</spage><epage>085121-12</epage><pages>085121-085121-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4279-1475</orcidid><orcidid>https://orcid.org/0000-0002-4292-4848</orcidid><orcidid>https://orcid.org/0009-0002-3959-9148</orcidid><orcidid>https://orcid.org/0000-0003-0499-2409</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-08, Vol.13 (8), p.085121-085121-12
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2854085330
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Aerodynamics
Computational fluid dynamics
Finite element method
Flow simulation
Fluid flow
Free surfaces
High Reynolds number
Propellers
Reynolds number
Turbines
Turbomachinery
title A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20method%20for%20complex-shaped%20hydraulic%20turbomachinery%20flow%20based%20on%20the%20immersed%20boundary%20method&rft.jtitle=AIP%20advances&rft.au=Binama,%20Maxime&rft.date=2023-08-01&rft.volume=13&rft.issue=8&rft.spage=085121&rft.epage=085121-12&rft.pages=085121-085121-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0165357&rft_dat=%3Cproquest_scita%3E2854085330%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854085330&rft_id=info:pmid/&rfr_iscdi=true