Loading…
A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method
Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propeller...
Saved in:
Published in: | AIP advances 2023-08, Vol.13 (8), p.085121-085121-12 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043 |
container_end_page | 085121-12 |
container_issue | 8 |
container_start_page | 085121 |
container_title | AIP advances |
container_volume | 13 |
creator | Binama, Maxime |
description | Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations. |
doi_str_mv | 10.1063/5.0165357 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2854085330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_49264564124f4cffb8bc6d313ba00b51</doaj_id><sourcerecordid>2854085330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</originalsourceid><addsrcrecordid>eNp9kUtLxDAQx4MoKOse_AYBTwpd8256XBYfCwte9BzytF3aZk1a1G9vtSKenMu8fvxnmAHgAqMVRoLe8BXCglNeHoEzgrksKCHi-E98CpY579FkrMJIsjPQraGN3WEc9NDEXrew80MdHQwxfTda_17kWh-8g_WHS3psGwuHMZnYaVs3vU8fMLTxDRqdJyb2cKg9bLrOp6_cxLF3emJm2XNwEnSb_fLHL8Dz3e3T5qHYPd5vN-tdYSmnQ0GkYJX2XFpDuA3YlyVlUgtnRJCCckydcdobJynGEtuS2LKi2NDSIFQhRhdgO-u6qPfqkJpu2kFF3ajvQkwvSqehsa1XrCKCccEwYYHZEIw0VjiKqdEImWnUAlzOWocUX0efB7WPY5pOlRWRnCHJKUUTdTVTNsWckw-_UzFSX89RXP08Z2KvZzbbZr77P_AnohKObw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854085330</pqid></control><display><type>article</type><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Binama, Maxime</creator><creatorcontrib>Binama, Maxime</creatorcontrib><description>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0165357</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Finite element method ; Flow simulation ; Fluid flow ; Free surfaces ; High Reynolds number ; Propellers ; Reynolds number ; Turbines ; Turbomachinery</subject><ispartof>AIP advances, 2023-08, Vol.13 (8), p.085121-085121-12</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</cites><orcidid>0000-0002-4279-1475 ; 0000-0002-4292-4848 ; 0009-0002-3959-9148 ; 0000-0003-0499-2409 ; 0000-0002-4260-9899 ; 0000-0003-4135-0640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/5.0165357$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Binama, Maxime</creatorcontrib><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><title>AIP advances</title><description>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>High Reynolds number</subject><subject>Propellers</subject><subject>Reynolds number</subject><subject>Turbines</subject><subject>Turbomachinery</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLxDAQx4MoKOse_AYBTwpd8256XBYfCwte9BzytF3aZk1a1G9vtSKenMu8fvxnmAHgAqMVRoLe8BXCglNeHoEzgrksKCHi-E98CpY579FkrMJIsjPQraGN3WEc9NDEXrew80MdHQwxfTda_17kWh-8g_WHS3psGwuHMZnYaVs3vU8fMLTxDRqdJyb2cKg9bLrOp6_cxLF3emJm2XNwEnSb_fLHL8Dz3e3T5qHYPd5vN-tdYSmnQ0GkYJX2XFpDuA3YlyVlUgtnRJCCckydcdobJynGEtuS2LKi2NDSIFQhRhdgO-u6qPfqkJpu2kFF3ajvQkwvSqehsa1XrCKCccEwYYHZEIw0VjiKqdEImWnUAlzOWocUX0efB7WPY5pOlRWRnCHJKUUTdTVTNsWckw-_UzFSX89RXP08Z2KvZzbbZr77P_AnohKObw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Binama, Maxime</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4279-1475</orcidid><orcidid>https://orcid.org/0000-0002-4292-4848</orcidid><orcidid>https://orcid.org/0009-0002-3959-9148</orcidid><orcidid>https://orcid.org/0000-0003-0499-2409</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid></search><sort><creationdate>20230801</creationdate><title>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</title><author>Binama, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>High Reynolds number</topic><topic>Propellers</topic><topic>Reynolds number</topic><topic>Turbines</topic><topic>Turbomachinery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binama, Maxime</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binama, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method</atitle><jtitle>AIP advances</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>085121</spage><epage>085121-12</epage><pages>085121-085121-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165357</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4279-1475</orcidid><orcidid>https://orcid.org/0000-0002-4292-4848</orcidid><orcidid>https://orcid.org/0009-0002-3959-9148</orcidid><orcidid>https://orcid.org/0000-0003-0499-2409</orcidid><orcidid>https://orcid.org/0000-0002-4260-9899</orcidid><orcidid>https://orcid.org/0000-0003-4135-0640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2023-08, Vol.13 (8), p.085121-085121-12 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2854085330 |
source | AIP Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Aerodynamics Computational fluid dynamics Finite element method Flow simulation Fluid flow Free surfaces High Reynolds number Propellers Reynolds number Turbines Turbomachinery |
title | A computational method for complex-shaped hydraulic turbomachinery flow based on the immersed boundary method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20method%20for%20complex-shaped%20hydraulic%20turbomachinery%20flow%20based%20on%20the%20immersed%20boundary%20method&rft.jtitle=AIP%20advances&rft.au=Binama,%20Maxime&rft.date=2023-08-01&rft.volume=13&rft.issue=8&rft.spage=085121&rft.epage=085121-12&rft.pages=085121-085121-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0165357&rft_dat=%3Cproquest_scita%3E2854085330%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-28649ae58cb25cf1e77348a6db6f863513dbdaebd831181c72c7931b37b009043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854085330&rft_id=info:pmid/&rfr_iscdi=true |